AY
/

-
-~

Sistemas Digitais I
LESI - 2° ano

Unit 7 - Sequential Systems Principles

Jodo Miguel Fernandes
www.di.uminho.pt/~jmf

DEP. DE INFORMATICA
72928 ESCOLA DE ENGENHARIA
UNIVERSIDADE DO MINHO

7. Sequential Circuits

- Summary -

= Combinational vs. Sequential Systems
= State

= Bistable Elements

= Latches and Flip-flops

= State Machine Design

7. Sequential Circuits

- Combinational vs. Sequential Circuits -

Logic circuits are classified as combinational or sequential.

A combinational circuit is one whose outputs depend only on its current
inputs. Example: TV channel selector.

A sequential circuit is one whose outputs depend on its current inputs,
but also on the past sequence of inputs. Example: TV channel selector
with channel up/down buttons.

It is impossible to describe the behaviour of a sequential circuit by
means of a table that relates inputs with outputs.

To know where to go next, we need to know where we are now.
The state of the system must be memorised.

7. Sequential Circuits
- State (1) -

The state of a sequential circuit is a collection of state variables whose
values contain all the information about the past necessary to account
for the circuit’s future behaviour.

In the TV channel example, the current channel number is the current
state.

Given the current state, we can always predict the next state as a
function of the inputs.

In a digital circuit, state variables are binary values.
A circuit with n binary state variables has 2" possible states.
Sequential circuits are also called finite-state machines.

7. Sequential Circuits
- State (2) -

The state changes occur at times specified by a clock signal.
A clock signal is active high if state changes occur at the clock’s rising
edge or when the clock is HIGH. Otherwise, it is active low.
The clock period (T) is the time between successive transitions in the
same direction.
The clock frequency (f) is the reciprocal of the clock period (f=1/T).
Two types of sequential circuits:
- Feedback sequential circuits use ordinary gates and feedback loops to obtain
memory elements (latches and flip-flops).
- Clocked synchronous state machines use latches and flip-flops to create
circuits that are regulated by a controlling clock signal.

7. Sequential Circuits
- Bistable Elements (1) -

The simplest sequential circuit consists of a pair
of inverters forming a feedback loop.

The circuit is called a bistable, since a digital
analysis shows that it has two stable states.

If Q is HIGH, the bottom inverter has a LOW output, which forces the top
inverter to produce a HIGH output (as assumed initially).

If Q is LOW, the bottom inverter has a HIGH output, which forces the top
inverter to produce a LOW output (as assumed initially).

We can use a single state variable (signal Q) to describe the state of the
circuit. There are 2 possible states, Q=0 and Q=1.




7. Sequential Circuits
- Bistable Elements (2) -

The bistable element is so simple that it has no inputs, so its state cannot be
controlled.

When power is applied to the circuit, it randomly comes up in one state and
stays there forever.

v P stable
The analysis of the bistable from an analog u__w:w

perspective shows more aspects.

The bistable is in equilibrium if the input
and output voltages of both inverters are
constant values consistent with the loop
connections and the transfer functions. 4
Vg =V

i ont?

metastable
Vs

stable

7. Sequential Circuits
- Bistable Elements (3) -
v re stable

The bistable is in equilibrium at the points Vi [
marked “stable”.
The third equilibrium point, labelled
“metastable”, occurs when V, , and V,
have no valid logic values. -~ dable
If the circuit operates at the metastable —
point, it could stay there indefinitely. e
The point is METAstable, because random
noise will tend to drive the circuit toward one
of the stable points.

Ball and hill analogy for metastable point.

metastable
Ve

matastable

N\

stable stable

7. Sequential Circuits
- Latches and Flip-flops (1) -

= Latches and flips-flops are the basic building blocks of most sequential
circuits.

= Aflip-flop is a sequential device that samples its inputs and changes its
outputs only at times determined by a clocking signal.

= Alatch is a sequential device that watches all of its inputs continuously
and changes its outputs at any time.

7. Sequential Circuits
- Latches and Flip-flops (2) -

R Q
= An S-R latch can be built with NOR gates.
s QN

= QN is usually the complement of Q.

= |f Sand R are both 0, the circuit behaves
like the bistable element.

S R Q QN
= Either S or R may be asserted to force the 0 0 lastQ last QN
feedback loop to a desired state. w Uu w “u
= S sets or presets the Q output to 1. 11 0 o

= Rresets or clears the Q output to 0.
B P
— A [s] & g

7. Sequential Circuits
- Latches and Flip-flops (3) -

S L

An S-R latch with active-low set and reset o8 Q
inputs may be built with NAND gates.
The operation of this latch is similar to the
previous one, with two major differences. w‘m oN
First, S_L and R_L are active low, so the
latch remembers its state, when S=R=1. SiRL @ N
Second, when S_L and R_L are both o0 1t
asserted, both outputs go to 1 (not 0). e

1 1 last Q last ON

7. Sequential Circuits
- Latches and Flip-fiops (4) -

= An S-R latch is sensitive to its inputs at all times.

= It may be modified to be sensitive to these inputs only when an enabling input
Cis asserted.

= The circuit behaves like an S-R latch when C=1.
= ltretains its state when C=0.

a SRC QG QN
0 0 1 lastQ last ON
— 3
c o011 0 1 B P
104 1 o _ls  ao-
oN 111 1 1
R ¥ x 0 last@ last QN




7. Sequential Circuits
- Latches and Fljp-fiops (5) -

Latches are needed to store P

bits of information.

A D latch can be used for ¢
that purpose. o
The D latch can be built

from an S-R latch.

This latch eliminates the troublesome situation in S-R
latches, where S and R may be asserted
simultaneously.

When C=1, the latch is open and the Q output follows —o o
the D input. When C=0, the latch is closed. —e P

L=t
% =+ 0|0
o

7. Sequential Circuits
- Latches and Flip-flops (6) -

A 2

) /
- ﬁ |

C fIzEH tpHLica)

tpLrioay tALHDD) tpLH(D)
= Delays exist for signals that propagate from the inputs to the Q output.

= There is a window of time (setup time and hold time) around the falling edge
of C when the D input must not change.
= The latch’s output is unpredictable, if those times are not respected.

tsatup

7. Sequential Circuits
- Latches and Flip-flops (7) -

= A positive-edge-triggered D flip-flop combines a pair of D latches to create a
circuit that samples its D input and changes its outputs only at the rising
edge of the CLK signal.

M D ClK Q QN
Do D Q D al—aaQ —_—
0 o 1
c 4 alo—ooN 4
1 m 1 o
x 0 last@Q lastQN
CLK

x 1 last@ lastQN

= The first latch is called the master and it is open when CLK=0.
= When CLK goes to 1, the master latch is closed.

= The second latch, the slave, is open while CLK=1, but changes only at the
begin of the interval, because the master is closed.

7. Sequential Circuits
- Latches and Flip-flops (8) -

= The triangle on the CLK input is a dynamic-input indicator and i R
indicates edge-triggered behaviour. —pox ep-

= A negative-edge-triggered D flip-flop simply inverts the clock input and
actions occur on the falling edge of the clock signal.

oo R a R a q Peol a aN g al—
o G alo—o oN 0 Ir 0 1 —Of»Clk Q-
1 m 1 o
o
oLk L X last G last QN

X 1 last G last QN

7. Sequential Circuits
- Latches and Flip-fiops (9) -

= Some D flip-flops have asynchronous inputs that are used to o P o
force its state, independent of the CLK and D inputs. oK @

= These inputs (PR and CLR) behave like the set and reset CLA
inputs on an S-R latch. 7

= They should be used for initialisation and testing purposes.

= Some D flip-flops have the possibility to hold the last value stored. This is
accomplished by adding an enable input.

D DENCLK Q QN
— Y .
EN o 1 0 1
D q Q 4 —EN
ox N 11 0 0 Lok ap-
Q ¥ 0 [ RstQ lastON
=13 x x 0 lastQ lastGN

x x 1 lastQ last GN

7. Sequential Circuits
- Latches and Flip-flops (10) -

= S-R latches are useful for control applications, where we may have
independent conditions for setting/resetting a control bit.

= If the control bit is supposed to change only at certain times with respect to a
clock signal, we need an S-R flip-flop.

s R C Q GON
il il am
s m QHM Q—0Q  x x 0 lastQ lastQN —5 el
ol ML afo-aan 0 0 lastQ last QN —c
RO R R ajo—
o 1 ] 0 1 —R
cd Lv T oL 1 o
1

undel. undef.




7. Sequential Circuits 7. Sequential Circuits
- Latches and Flip-flops (11) - - Latches and Flip-flops (12) -
= The problem of what to do when S and R are both asserted is solved in a _ _
master/slave J-K flip-flop. = AT flip-flop changes state every tick of the clock.
= The Jand K inputs are analogous to S and R. T “|‘_
= However, asserting J asserts the master’s S input only if Q=0. —T MW o ¢ \|M//|_M\/|n/lm|
= Asserting K asserts the master's R input only if Q=1.
= Thus, ._2 mqa K are asserted simultaneously, the flip-flop goes to the = The signal on the flip-flop’s Q output has half the frequency of the T input.
opposite of its current state. « D and JK flip-flops can be used to build a T flip-flop.
J K C Q QaN
L U s aM Ts X% s as
’ ¢ aMm_L— ¢ ‘ ¢ 0o 0 _M ”mMM _EHM“ H_ o ﬁu a oQ U . A—oQ
K R a R Q anN ¢ ~alo T DJH’V CLK
M_ MH : w “ — To— ok oO|H|n_oz «  Go—ooN
¢ T 1 L lastON lastQ
7. Sequential Circuits 7. Sequential Circuits
- Latches and Flip-flops (13) - - State Machine Design (1) -
= ATflip-flop can have an enable input. = A finite state machine (FSM) can be formally defined as the quintuple
= The flip-flop changes state at the triggering edge of the clock, only if the <s,1,0,F,G>, Where:
enable signal EN is asserted. - S represents the set of states.
EN f V) f - 1 represents the set of inputs.
=™ ; \ \ \ - O represents the set of outputs.
e m - F represents the next-state function.
@ / f, / - G represents the output function.
« D and JK flip-flops can be used to build a T flip-flop with enable. = The F function assigns to every pair of state and input combination another
state (F: SxI—S).
N ° L|n Q g wﬁ PP el = The G function determines the output values in the present state.
T e Q——DOGN k  QO—OGN
7. Sequential Circuits 7. Sequential Circuits
- State Machine Design (2) - - State Machine Design (3) -
= There are 2 types of FSMs, which correspond to 2 different definitions of the = General structure of a clocked synchronous Mealy State Machine:
output function G.
= For the Moore type, the G function is state-based (G : S—0). F
= An output symbol is assigned to each state of the FSM. e | Mg e ) s | everioe | |
= For the Mealy type, the G function is input-based (G : SxI—0). ’ ook input )
= An output symbol is defined by a pair of state and input symbol.
= The FSM model assumes that time is divided into uniform intervals and that S
:m:m;_.o:m oceur n:_v\ atthe cm.@_g_:@ o.* omm: time interval. = The State Memory is a set of flip-flops that store the current state of the
= There is a clock signal that defines the time intervals, called clock cycles. machine. The flip-flops are connected to a common clock signal.
= Each FSM model can be implemented with flip-flops and logic gates. - Both F and G are strictly combinational circuits.




7. Sequential Circuits
- State Machine Design (4) -

= General structure of a clocked synchronous Moore state machine:

——» cutputs

inputs =———=)| Neststate | cycjation State current state | Output
clock

Logic 5| Memay Logic
F G
clock input
signal

= The only difference between Mealy and Moore machines is in how the
outputs are generated.

= To simplify the G block to just wires, we can use the output-coded state
assignment, where the state variables serve as outputs.

7. Sequential Circuits
- State Machine Design (5) -

= The steps to design a clocked synchronous state machine are:
- Read the natural language description or specification of the system.
- Draw a state diagram, using mnemonic names for the states.
- Construct a state/output table.
- (Optional) Minimise the number of states in the table.

- Choose a set of state variables and assign state combinations to each state.

- Substitute the state names for the corresponding state combinations in the table.

- Choose a flip-flop type for the state memory.

- Construct an excitation table that shows the excitation values required to obtain

the desired next state for each state/input combination.
- Derive excitation equations.
- Derive output equations.

7. Sequential Circuits
- State Machine Design (6) -

= Example of a state machine problem:
Design a state machine with inputs A and B, and output Z that is 1 if:
- A had the same value at each of the two previous clock ticks, or
- B has been 1 since the last time that the first condition was true.
Otherwise, the Z output is 0.
= Right now, the meaning of the specification may not be clear.
= The designer has to transform an ambiguous specifications written in
natural language into an unambiguous state table.
= The machine is of Moore type, since the output depends only on the
current state, that is, what happened in previous clock periods.

7. Sequential Circuits

- State Machine Design (7) -

AB AB
Meaning s [ols] a1l 11 10 z Meaning s [ols] a1 11 10 z
Inttial state INIT qQ Initial state INIT AL AD Al Al Q
GotaOon A AL Q
Gotafon A At Q

& 8

AB AB
Meaning g Q0 al 11 3] z Meaning & (9] QL 11 10 z
Inttial state INIT ool AD Al At qQ Initial state INIT foe) RO Al Al [s]
GotaGon A A QK QK Al At qQ Gotalon A AL K QK Al Al [s]
Gotaton A Al qQ Gotaton A At Ao Ao QK QK Q
Got two aqual Ainputs QK 1 Got two aqual A inputs QK 1

Sequential Circuits
- State Machine Design (8) -

AB AB
Meaning 8 0 0l 11 0w Z Meaning 8 0l 11 0w Z
Initial state INIT AL AL Al Al Q Initial state INIT AD AD Al Al Q
Gotaoon A AD QK QK Al Al 4] Gotadon A AD QKo OKo Al Al 4]
Gotaton A Al A0 Ao QK QK Q Gotafon A Al A0 A OKI QK1Y [s]
Gottwo equal Ainputs ©K 7 QK OK ¥ | Twoequal, A<Olast  OKO 1
Two aqual, A=1 last QK1 1

Sx S

AB AB
Meaning s 00 al 11 10 z Meaning s g a1 11 10 z
Initial state INIT A0 Ao Al Al Q Inttial state INIT A0 A0 Al Al [s]
Gotaoon A AL QKO OKo Al Al Q Gotaoon A AL OKO QKo Al Al [s]
Gotaton A Al AD A0 OKI QK1Y aQ Gotaton A At A0 A QK1 QK1Y Q
Two aqual, A=0 last QKO OKO  OKo  OKI Al 1 Two equal, A= last QKO OKO QKD OKi Al 1
Two aqual, A=1 last QK1 1 Two equal, A=1 last QK1 Ao QKD 0K QK1 1

S= =

7. Sequential Circuits

- State Machine Design (9) -

= The next step is to determine how many binary variables are needed to

represent the states in the state table.
= After that, specific combinations are assigned to each state.

= The binary combination of state variables assigned to a particular state is a

coded state.

Ag

= With n flip-flops, 2" states can be coded. s ® o n

1

= The number of flip-flops needed to code s _um MMQ oﬁo H
states is _|_0@Nm|_. A AD A OKI
= In our problem, there are 5 states, so 3 flip-

QKD QKD QKD OK1
. [s]] AD QKD oK1
flops are required. =

Ll
Ll
Qakl
Ll
gkl

-~ o o ol|N




7. Sequential Circuits
- State Machine Design (10) -

= There are several alternatives to code the 5 states.

Assigament

State Simplest Decomposed Onre-hot Aimost One-hot
Name ar-az q1-q3 Q-5 Q-
INIT ooo 000 00001 0000

A2 001 100 00010 0001

Ll o010 101 oo100 o010

QKD o011 110 01000 o100

akl 100 111 10000 1000

= The simplest assignment of s coded states is to use the first s binary

integers in binary counting order.

= This assignment does not always lead to the simplest excitation equations,

output equations and resulting logic circuit.

7. Sequential Circuits
- State Machine Design (11) -

The state assignment has a major impact on circuit cost.

It may interact with other factors, such as the choice of storage elements
and the realisation approach for excitation and output logic.

How to choose the best state assignment for a given problem?

In general, the only formal way to find the “BEST" assignment is to try ALL
the assignments.

That is not possible to do by hand!!! For our example, there are 6.720
different ways to assign the 3-bit combinations to the 5 states.

Designers must rely on practical guidelines to achieve reasonable state
assignments.

7. Sequential Circuits
- State Machine Design (12) -

= Guidelines for state assignment:

Choose an initial coded state into which the machine can easily be forced at reset
(typically, 000...0 or 111...1).

Minimise the number of state variables that change on each transition.

Maximise the number of state variables that don’t change in a group of related states.
Exploit symmetries in the problem specification and the corresponding symmetries in the
state table. If one state or group means almost the same thing as another, once an
assignment is established for the first, a similar assignment (differing in one bit) should
be used for the second.

Decompose the set of state variables into individual bits or fields, where each one has a
well defined meaning with respect to the input effects or the output behaviour.
Consider using more than the minimum number of state variables to make possible a
decomposed assignment.

7. Sequential Circuits
- State Machine Design (13) -

Some of the previous guidelines were used in the

decomposed state assignment. pne Decempesed
INIT is 000, which is easy to force with the NI 000

. . ) 100
asynchronous CLR input of the flip-flops. a o1
INIT is never re-entered, once the machine is ok Lo

(=14} 111

working. Q1 is used to indicate whether or not the
actual state is INIT.

Q2,Q3 are used to distinguished among the other 4 states.
Q3 gives the previous value of A.

Q2 indicates that the condition for a 1 output are satisfied in the current
state.

7. Sequential Circuits
- State Machine Design (14) -

State  One-iiol Aimost Ore-hol

The one-hot state assignment can be adapted to any e @41 #r®
state machine. T oooo1 00co

A 00010 o001
This assignment uses more than the minimum A 00100 0010
number of state variables: it uses 1 bit per state. OKa - olooo oteo
QK1 10000 1000

This usually leads to small excitation equations,
since each flip-flop must be set to 1 for transitions into only one state.

The almost one hot assignment uses the no-hot combination for the initial
state.

This eases the reset of the machine, since the initial state is 00...0.

7. Sequential Circuits
- State Machine Design (15) -

There are unused state codes when the number of states is less than the
number of state variable combinations.

How to consider those unused states?

In a minimal risk approach, it is assumed that the machine may go to an
unused state, due to a hardware failure, for example.

For all the unused states, an explicit transition to a safe state is made.

In a minimal cost approach, it is assumed that the machine will never enter
an unused state.

The next state entries of the unused states can be marked as “don’t cares”.




7. Sequential Circuits
- State Machine Design (16) -

= A transition table is obtained by substituting the state names by the
corresponding code states.

7. Sequential Circuits
- State Machine Design (17) -

= The structure and content of the excitation table depend on the type of flip-
flop (D, J-K, T, etc.) being used.

= The transition table shows the next coded state for each combination of . zos\_mmw«ma. Bmmﬁ:w%a.amoz:ﬂ %m_@:mac_wﬁ_w. _w au-ﬂoﬂw,.cmomcmw of their
current coded state and input. availability in both discrete packages an s, and their ease of use.
. = The characteristic equation of a D flip-flop is: e
= For the state machine example, the g Q=D arazas B w2
transition table is obtained by using the Giaeas 10 m 11 m z ) o .
decomposed state assignment. o0 100 100 101 (o1 O » For Dflip-flops, the excitation table is Wo i 110 i1 101 o
. . _ 100 110 110 101 101 O identical to the transition table, except for the 101 100 100 111 111 ©
= The next step is to write an excitation table tet 160 160 111 111 © labels 1o 110 110 111 101 1
that shows the flip-flop excitation values o 10 110 iLotol oo . 1t 100 110 111 111 1
. 111 100 110 111 111 1 oiozme
needed to make the machine go to the Evvy—
desired next coded state.
7. Sequential Circuits 7. Sequential Circuits
- State Machine Design (18) - - State Machine Design (19) -
In a minimal-risk approach, the 7 2e — = - =
= The excitation ﬁmc_m._m like a truth table for 3 combinational functions next state for each unuse dsiate N ma D“ A“ “w fewowwc m_ a“ A“ m
(D1,D2,D3) of 5 variables (A,B,Q1,Q2,Q3). is 000. B P ENER ERE
= The information in the excitation table can be transferred to Karnaugh = From the maps the following w| e e el T
maps, to find minimal expressions for each function. expressions can be obtained: wofejeo]e vl f
- . . . D1=Q1+Q2"Q3’ [ — L
= The excitation table does not specify functional values for all input D2 = Q1-Q3"-A+Q1-Q3-A+Q1-Q2:B a0 8 a1t B
combinations, since the information for the unused states is not D3 = Q1-A+Q2-Q3"A S P N,K A
specified. « Zis active for states 110 and 111 gz o ot 1 10 [\gzas e?
« For our example, we will take the two approaches previously referred: N“w“..mwow + Q10203 R “_ﬂw e
minimal risk and minimal cost. N P N e e e o
e 10| 0 o o o @ 10| 0 o .4[\,_\
ale B @ s
7. Sequential Circuits 7. Sequential Circuits
- State Machine Design (20) - - State Machine Design (21) -
b1 am LI aB LI
[l _3 a E mUU_.ONOI, ﬁjm oz ow/ oo o1 11 1o ONDu/ oo o 11 1o 1 D1 o aQ ot
next state for each unused state L R R AR s R R R —bok ajo—
_mm “»QO—._-ﬁIOm:.O:. of|d |d |d|d - ol 1 1 1 1 ® OA,_%
X H|d |d|d|d M1 1 1 1
= From the maps the following | jola = |44 R ENERERE 0 o2 z
m”ﬂﬁmmm_o:m can be obtained: SR — o , b o
D2 =Q1-Q3A+Q3-A+Q2-B Y T Az A ?
D3=A gega ™\ 00 01 11 10 ONB/ oo 01 11 10 B 2 Qa
. . oo o |1 ]1] -~ oo{o o |1 [1] °
= Zis active for states 110 and 111 P o e g T S ek a
and don’t-care for the unused wle fafe (o) [® [ulolofr[1]|® RESETL ?
states. @z fod |d |d|d] ez fo)e o |1 |1] )
Z2=Q2 [ [E— CLK




7. Sequential Circuits
- State Machine Design (22) -

= State diagrams are often used to design state machines.

= Designing a state diagram is similar, but simpler, to design a state table.

= A state diagram can contain some ambiguities, which is not possible in a
state table.

= Inan improperly constructed state diagram, the next state for some input
combinations may be unspecified, which is undesirable.

= ltis also possible that multiple next states exist for the same input
combination.

7. Sequential Circuits
- State Machine Design (23) -

= The next example is a state machine that control the tail lights of a car.

= The machine has 2 input signals, LEFT and RIGHT.

= ltalso has an emergency HAZ input that makes the 6 lights to flash.

Lc LE LA

<B¢8

\
Is
\
Is
.

-
~
-
~
-
~
-

=|
=|
=|
=|

\
Is
\
Is
\
Is
.

RA

=
=

~

=
=|
==
==

Is

~

Is

=
=
=
=

HeB¢8
H 8 B¢

\
Is

¢

-
~

=|
=|

B¢
=

-
~

\
Is

7. Sequential Circuits
- State Machine Design (24) -

= State diagram and Qutput table for the car
lights controller.

Cutput Table

State LC LE LA RA RB RC

IDLE ©
L1 0
L2 0
La 1
0
0
0
1

(LEFT + RIGHT + HAZ)"

R1

R2

Rz
LRa

- 000+ 400
-~ 000 4 < aaq
- 4 4 40000
4~ 4+ 4u 00000
+ + 00 000ao

= Multiple inputs asserted simultaneously (LEFT
and HAZ at IDLE) are not handled.

7. Sequential Circuits
- State Machine Design (25) -

= Priority was given to the HAZ input.
= When LEFT and RIGHT are asserted
simultaneously, it is assumed that an
emergency is requested.
= The new state diagram is unambiguous.
= The transition expressions on the arcs
leaving the same state are mutually
exclusive and all-inclusive.
- No two expressions are 1 for the same input
combination.
- Some expression is 1 for every input
combination

7. Sequential Circuits
- State Machine Design (26) -

= Once a left- or right-turn cycle has begun, if
must be finished even if an emergency is
requested.

= |tis safer to have the machine go into LR3
state as soon as possible.

= There are 8 states, so 3 flip-flops are
needed to synthesise the circuit.

State az @ an

0
0
0
L3 0
1
1
1
1

ow 0w+~ o0eo
06~ m~0r~~o0

Sequential Circuits
- State Machine Design (27) -

Tramsition Expression

Se

a5

qis

G

LR3

e e o oo e oo oflf

o o o oo of@

[LEFT+ FIGHT+ HAZY
LEFT - HAZ' - RIGHT'
HAZ + LEFT - RIGHT
RIGHT . HAZ . LEFT
HAZ'

HAZ

HAZ'

HAZ

1

HAZ'

HAZ

HAZ'

HAZ

1

1

IDLE
u
LR3
Rl

o e o o

o o o

~ o o o o

o e o o e




7. Sequential Circuits
- VHDL (1) -

VHDL does not provide any special language constructs for specifying
state machines.

Most of the VHDL features that are needed to support clocked synchronous
state machines were already introduced.

A VHDL process and the simulator’s mechanism for tracking signal
changes form the basis for handling sequential circuits in VHDL.

The event attribute can be attached to a signal name to yield a value that
is true if the signal has changed value.

This allows edge-trigger behaviour to be modelled.

The usage of enumerated types and CASE statements is also popular for
describing state machines.

7. Sequential Circuits
- VHDL (2) -

libzary IEEE;
uoe IEEE.skd_legic 1163 .&11;

Positive-edge-triggered D flip-flop
with asynchronous clear.

The CLR input overrides any

entity VposDEf is
port (CLK, CLE, D: in STD_LOGIC;
Q@ QH: out STD_LSGIC ]
end VposDEE:

behaviour on the CLK input. b, TR VperREE_Smeh of Yposhit 4o
process (CLE, CLR)
CLK’ event is frue for any PR then @ o s @ = s
ijbmm on O_I—A M”Mu”mwrm ‘event &od CLK= thea @ <= D; @ ¢= not D;

end process;
=nd VpesDEE mrzch;

Two other ways to construct
processes or statements with e
edge-triggered behaviour. PO

end precessi

Q =D when CIX 'eveat and CLK='1' else Gr

7. Sequential Circuits
- VHDL (3) -

There are many possible ways of writing a VHDL program that meets the
stated requirements.

The first approach is to construct a state and output table by hand and the
manually convert it into a corresponding program.

The first thing is to create an enumerated type (Sreg-type), whose
values are identifiers corresponding to the state names.

It then declares a signal of that enumerated type , which is used to hold the
machine’s current state.

The statement part of the architecture, has two concurrent statements.

The process is sensitive only to CLOCK and establishes all of the state

The selected-assignment statement handles the machine’s Moore output z.

library IEEE;
use IEEE.std_logic_1164.211;
[]
entity smezamp is
port ( CLOCK, A, B: in STD_LOGIC;

Sequential .o T

architescture smexamp_arch of smexamp is

H H type Srec_type is (INIT, A0, A1, OKD, OKl);
ircuits v e e
begin
- VHDL \%\ - process (CLOCK) —- state-machine states and transitions
becin
if CLOCK'event and CLOCK = 'l then
case Sreg is
when INIT => if  A='0' then Sreg <= A0;
elsif A='1' then Sreg <= Al;  end if;
AB when A0 => if  A='D' then Sreg <= OKD;
elsif 2='1' then Srec <= Al; end if;
5 LU i LIS when A1 =>  if A='0' then Sreg <= A0;
™WT A A A Ao elsif A='1l' then Sreg <= OKl; end if;
when OKD => if  A='0' then Srag <= OKD;
A0 OKD OKO A1 M0 elsif A='1' and B='0D' then Sreg <= &l;
Al AQ A0 OKI CKI o elsif A= nd B='l' then Sreg <= OKl; end if;
OKO OKO OKo OKI Al 1 when OKL => if  A='0' end B='D' then Srec <= AD;
elsif A='0' and B='l' then Sreg <= OKO;
Gk A0 OWD oK1 oW 1 clsif A='l' then Sreg <= OKL; end if;
ED when others => Sreg <= INIT;
end case;
end if;
end process;
with Sreg select -- oubput values based on state

Z <= '0' when INIT | 2D | 21,
'1' when OKD | OKL,
'D' when others;

end smexamp_arch;

7. Sequential Circuits
- VHDL (5) -

What about the state-assignment problem?

A synthesis tool is free to assign any integer values (or binary combinations)
kes with the identifiers of an enumerated type.

The typical assignment is the “simplest’, using the order in which the states
are listed.

However, designers can force a different assignment.

One way is to use VHDL's
attribute statement.

_._.:m <_.__u_.. language processor | architecture smesampe_arch of smexams is
ignores this value, but passes this 7z zee e = (3T o, 3 oty
information to the synthesis tool.

library IEEE;

use IEEE.std_logic_1164.all;
library SYNOPSYS;

use SYNOPSYS.attributes.all;

"0DOD 000L 00LO D100 1000";
signal Sreg: Sreg_type;

7. Sequential Circuits
- VHDL (6) -

= Another way to force a state assignment is to define the state register more
explicitly using standard logic data types.

library IEEE;
use IEEE.std_logic_1164.all;

architecture smexampc_arch of smexamp is
subtype Sreg_type is STD_LOGIC_VECTOR (1 to 4);

constant INIT: Sreg_tvpe
constant A0 sreg_type
constant Al Sreg_tvpe
constant OKO sreg_type
constant OK1 Sreg_type := "1000";

signal Sreg: Sreg_tvpe;




Sequential

Circuits
- VHDL (7) -

= Car's light problem:
state machine
specified in VHDL.

Vtbird is
CLOCE, RESET, LEFT, RIGHT, HAZ:
LIGHTS: buffer STD_LOGIC_VECTOR

eatity
sort | in STD_LOGIC;

(L te &) )7

acchitscturs Vtbird_arch of Vtbird iz
coastaat IDLE: STD_LOGIC_VECTOR (1 to 6)
coaztaat L3 : STD_LOGIC_VECTOR (1 to 6)
coastaat L2 5TO_LOGIC_VECTOR (1 to 6)
coastaat Ll : STD_LOGIC_VECTOR (1 to &)
coastaat El STD_LOGIC_VECTOR (1 to 6)
coastaat E2 STD_LOGIC_VECTOR (1 to &)
coaztaat R3 : STD_LOGIC_VECTOR (1 to &)
coastaat LEI : STD_LOGIC_VECTOR (1 te 6)

begin
srocess (CLOCK]
begia
if CLOCE'swvent and CLOCK = 'l' thea
if RESET = 'L' then LIGHTS <= IDLE; =lse
ca=ze LIGHTS i=
whea IDLE => if HAZ='l' or (LEFT='l' and RIGHT='l') thea LIGHTS
=lsif LEFT="1"' thea LIGHTS
2ls=if RIGHT='1' then LIGHTS
alze LIGHTS ©= IDLE;
ead if;
when L1 => if HAZ='l' then LIGHTS <= LR}; =l=s LIGHTS <= L2; =nd if;
whea L2 => 1f HAZ='l' thea LIGHTS <= LR3}; else LIGHTS <= L3; =ad if;
whea L3 => LIGHTES <= IDLE;
whea RL  => if HAZ='l' then LIGHTS <= LR3; =lse LIGHTS <= R2; end if;
whea R2 => i1f HAZ='l' thea LIGHTS <= LR} else LIGHTS <= R3; =ad if;
when R} => LIGHTS <= IDLE;
whea LR3 => LIGHTS <= IDLE;
whea others => aull;
=nd cass;
ead if;
end if;
ead srocess;
end Vtbird_arch;




