Sistemas Digitais I
LESI - 2° ano

Unit 6 - Combinational Design Practices

Jodo Miguel Fernandes
www.di.uminho.pt/~jmf

6. Combinational Practices

- Summary -
= PLDs
= Decoders
= 7-Segment Decoders
= Encoders

= Multiplexers

= XOR and Parity Circuits

= Comparators

= Adders, Subtractors and ALUs

= Multipliers
O . [[—
UNIVERSIDADE DO MINHO
6. Combinational Practices 6. Combinational Practices
-PLDs (1) - -PLDs (2) -
« The first PLDs were Programmable Logic Arrays (PLAS). Each input is connected to a)
. APLA is a combinational, 2-level AND-OR device that can be buffer et UJQM_O% a ﬁaﬂmﬁng ° 5
programmed to realise any sum-of-products logic expression. M_ omm_ﬁ emented version ofthe . &
« APLAs limited by: gnal. .
. Potential connections are
- the number of inputs (n) indicated by Xs o
- the number of outputs (m) Indica m. < ' o
- the number of product terms (p) The Q.m<_mm is programmed by
= We refer to an “n x m PLA with p product terms”. Usually, p << 2", Mwwm:w_wﬂﬂm the needed
= Annx m PLA with p product terms contains p 2n-input AND gates and) .
: The connections are made by A 4x3 PLA with 6 product terms.
m p-input OR gates.
fuses.
6. Combinational Practices 6. Combinational Practices
-PLDs (3) - -PLDs (4) -
= Compact representation of the = O1=1112+ 11121314 Another PLD is PAL (Programmable Array PAL1sLE
4x3 PLA with 6 product terms. 02=13 + 111314 + 12 Logic). — ”4 ol
)] 1] — 12 ——
03 =112+ 1113 + 1112”14 A PAL device has a fixed OR array. — ol
"z h s Ina PAL, product terms are not shared by s ”mm 15
2 3 e s the outputs. — {8 051
st {3 . 4 [o%:] Nal
e 1y s Each output has a fixed and unique set of 2] o7 12

“]

JUUUUU

]

NN

MUY\O

o2 MHUT\Q
o

o1

YWY

Q3 o3

product terms that it can use. o8 —

A PAL is usually faster than a similar PLA.

6. Combinational Practices

-PLDs (5) -

= Part of the logic diagram of the PAL 16L8.

1
I]

6. Combinational Practices

- Decoders (1) -

= A decoder is a circuit that converts coded inputs into coded outputs.
= Usually, the input code has fewer bits than the output code.

STEs Tser seen wans Frn vamE sEmw s = The most common decoder is an n-to-2" or binary decoder.
. = Abinary decoder is used when one of 2" outputs needs to be activated
2 (1%
— based on an n-bit input value.
12 w_‘/»|. z— o |\\U‘ Yo
.m Inputs Outputs awwm.,
: Mvwﬂ s o ow e i
B —n Y
= 1 [V 4] [o 1 wal— | 2
v -0x T oo o o 10 B 7 IQ
e 13 111 1 o 0 0
R= , o FH_U‘ o
6. Combinational Practices 6. Combinational Practices
- Decoders (2) - - Decoders (3) -
= AT74x139 IC has two independent 2-to-4 decoders. = A74x138 IC has one 3-to-8 decoder.
T4x139 Tax128
inpuis Oulputs
|_° 16 “H“u N.MH a|m =1} Hn_u W.H Gl GRA_L GZEL O =] A Y7L OYe L YEL w4 L V3L Vel Yi_L vO.L
e relot— fnputs Ourlputs |QONp vo ol 0 x x x x x 1 1 1 1 1 1 1 1
3 1B va 0q| Gl B A Ya_l vzl ¥i_L Yo_L — G2B va Oﬁ x i " x x x R i R | i . A i
1 oz x 1 1 1 1 ' 4 x x 1 * x x 1 1 1 1 1 1 1 1
hOmm N,A.._GF o o o ! ! 1 o z m <m0F 1 o <] o 0 0 1 1 1 1 1 1 1 o
271 OF M m n_- ” n_- w “ 3o Y6 Ow' 1 o [} o 0 1 1 1 1 1 1 1 [1
““ 28 2v2 Owo‘ o 1 1 o 1 1 1 Y7 o— 1 [+] o o 1 0 1 1 1 1 1 [+] 1 1
2B 2B 1 [o g 1 1 1 1 1 1 o 1 1 1
1 [+] 4] 1 o o 1 1 1] 1 1 1 1
1 -] a 1 [+] 1 1 1 -] 1 1 1 1 1
1 [+] [s] 1 1 [s] 1 [s] 1 1 1 1 1 1
1 [+] [s] 1 1 1 s] 1 1 1 1 1 1 1
6. Combinational Practices 6. Combinational Practices
- Decoders (4) - - Decoders (5) -
sv Fax138 .
_ .0 volpt pecoL To handle larger code 7z
= Multiple decoders can be 4|>>>;|m. S wH DEGIL words. decoders can be
used to decode larger code o Ry i .
words) o peoat cascaded hierarchically.
. NO A 10 "
z ¥5 jo—— DEC5_L _tA.
- The top decoder (U1) is e fo ol oo w m_ﬁa w_w %omawmg ww
enabled when N3 is 0, and T — . wcﬁ_ M_Q o:% -lo-% and four
the bottom decoder (U2) is 7138 -10-C decoders.
enabled when N3 is 1. g T % pece.L The 2-to-4 decoder treats
4 — i i N
« To handle larger code words, e -ty the high order bits. :
decoders can be cascaded |, vol bl The 3-to-8 decoders
hierarchically. He o ol rew treat the low-order bits.
¢ Y7o DECI5_L

6. Combinational Practices
- Decoders (6) -

There are several ways to write decoders in VHDL.

The most primitive would be to write a structural description equivalent to
the logic circuit on slide 7.

librazy IEEE;
uze IEEE.std_logic 1169.811;
entity VZtcddec iz

pert (10, 11, EM: i STD_LOGIC;

¥0, Y1, ¥2, ¥3: out STD_LOGIC 1;

end V2toddecs
architecture Ultcddec_s of VZtoddes iz

mignal HOTIO, NOTI1: STD_LOGIC:
componeat inw pork (I: in STO_LOGIC: O: out STO_LOGIC] end componentr

component aadd poct (10, 11, I2: in STO_LOGIC: O: cut STO_LOGIC)1 eod components

begin

Ul: inv pert map (10,HOTION;
U2: inw pert map (11,HOTIN;
U3: andd port map (HOTI0,HOTI1,EM,¥0);
V4: sndd pork mep t
TS: and3 port map (NOTIO,
UE: andd pork map (10,

T1,EM, ¥
et

end Vitcades s

6. Combinational Practices
- Decoders (7) -

= The second alternative is using the dataflow style.

librery IEEE;
use IEEE.ztd_logic_1164.a11;

eatity VTdx13d iz
port (Gl, G2A_L, G2E_L: in STD_LOGIC:
R: in STD_LOGIC_VECTOR (2 dewnko 017
¥_L: out STD_LOGIC_VECTSR (0 to T)
=nd WT4x138;

-- enable inputs
-- select inpute
-~ decoded outputa

srchitecture V14x138_8 of VTaxl3s sz
signal Y_L_i: STD_LOGIC_VECTOR (0 to T);

"11111111" when cthezs;
YL t= ¥_L_i when (G] &nd not G25_L &ad not GZE_L)='1' else "11111111";
end ¥14x138_a;

6. Combinational Practices
- Decoders (8) -

Another alternative is using the behavioral style.

architecture VitoSdec_c of Vitoddec is
begin
procecs (Gl G2, 63, A
varisble i: INTEGER tange 0 ko Tr
regin
¥ <= "o0000000";
if (Gl and G2 and 63 = ‘1° khen
foz i dn 0 £o T loop
if i=CONV_INTEGER(A) thea ¥{i) <= '1°%; end if;

=nd proceza;
end Viteddes_c;

6. Combinational Practices
- 7-Segment Decoders (1) -

= A 7-segment display is used in watches, calculators, and devices to show
decimal data.

= Adigitis displayed by illuminating a subset of the 7 line segments.

L

& U ied456 18

= A 7-segment decoder has a 4-bit BCD as its input and the 7-segment code
as its output.

6. Combinational Practices
- 7-Segment Decoders (2) -

inputs Ouiputs
BL D = B A a b ¢ d e 1 g - mxmﬁo_mm _

o X X X x Q o o Q Q 0 o . . e .

L e o oo o 1111110 Obtain minimised

1 o o o 1 <] 1 1 <] <] o o H

DS A S D expressions for outputs
L of the 7-segment

1 o 1 o a 4] 1 1 4] 4] 1 1

f o1 o 1 1 0 1 10 1o decoder.

1 o 1 1]] a 1 1 1 1 1 .

1 o 1 1 1 1 1 1 ©o © 0o o0 - mxmﬁo_mON

1 1 o o o 1 1 1 1 1 1 1 ..

1 1 o o 1 1 1 1 <] <] 1 1 g_‘_ﬁmm<IU_l

Pore oo oe e description of a 7-
1t e 0 s 1o oo oo 1 segment decoder.

1 1 1 o 1 1]] 1] 1 1

1 1 1 1]]]] 1 1 1 1

1 1 1 1 1 =]]] =] =] o o

6. Combinational Practices
- Encoders (1) -

= An encoder is a circuit whose output code has normally fewer bits than its
input code.

= The simplest encoder to build is a 2"-to-n or binary encoder. It has the
opposite function as a binary decoder.

= Equations for an 8-to-3 encoder : ey
YO=1+I3+15+17
Y1=12+13+16+17 —i vol—
Y2=14+15+16+17 - " N
« Only 1inputis active ata time. What = ™9 : |- ot
happens if 2 inputs are asserted (ex:
12 and 14)?

7 outputs

6. Combinational Practices

- Encoders (2) -
Imnw_m.ﬂ
To implement a request sreeser
encoder, the binary REQY —
encoder does not work! REGE — -
. REGa —] — y
It assumes thatonly 1input e, < R
is asserted. - :
REQN —

If multiple requests can be made simultaneously, a priority must be
assigned to the input lines.

When multiple requests are made, the device (priority encoder)
produces the number of the highest-priority requestor.

6. Combinational Practices

- Encoders (3) -
Priority
encoder
Input I7 has the highest priority. | __M el
Outputs A2-A0 contain the number of the — __m M_ —
highest-priority asserted input, if any. i
The IDLE output is asserted if no inputs are I [
asserted. —lio

Intermediate variable Hiis 1, if li
is the highest priority 1-input:

H7 =17 H6 = 1617’
H5=1516"17" H4 = 14151617
... (similar equations for H3-HO)

- AO=H1+H3+H5+H7
A1=H2 + H3 + H6 + H7
A2=Ha + H5 + H6 + H7

= IDLE=10"11"12"13"1415"16™-7’

j

6. Combinational Practices

- Multiplexers (1) -
multiplexer

A multiplexer (mux) is a digital switch. enable EN
It connects data from one of n sources to scect Ay 5L
its output. 2o
The SEL input selects among the n N b
sources, 0 s = log,n | e Tt PP
When EN=0, Y=0; —2 ot
When EN=1, the mux is working.

Multiplexers are used in computers between the processor’s registers
and its ALU, to select among a set of registers which one is connected to
the ALU.

6. Combinational Practices

- Multiplexers (2) -
WP Nbx‘_mA IC Imm one 8- 744151 p— P
input, 1-bit multiplexer. T T
The select inputs are PEa— P
named A,B,C, where C is ML ooooooo oe oo
the MSB. T e e oo
The enable input EN_L is o0t b4 o
active low. ” H M _w W“ ”“
Both active-low and high O

versions of the output are
provided

6. Combinational Practices
- Multiplexers (3) -

A 74x157 IC has one 2-input, 4-bit
multiplexer.

The select inputis S.
The enable input G_L is active

low.

The truth table was extended and

inputs appear at the outputs tputs Dutputs
columns. Gl = T @y ar ar

14 2A aA EE
1B 2B dE 4B

=R -
[-

6. Combinational Practices
- Multiplexers (4) -

A multiplexer can be used to select
one of n sources of data to transmit
on abus.

At the other end, a demultiplexer
can be used to route the bus to one
of m destinations.

The function of a multiplexer is the inverse

of a demultiplexer’s.

A 1-bit, n-output demultiplexer has one
data input and s inputs to select one of
n=2s data outputs.

SRCA DSTA
SRCEB

BUS DSTB
SRGG — MUX DAL . DSTC
SHCE . . DSTZ

SHCSEL DSTSEL
2-to-4 decodar
SHCDATA & hi'l DSTODATA
bl DST1DATA
DSTSELO — A Y2 |—— DST2DATA
ﬁj DSTSEL1 B bl DSTADATA
e

6. Combinational Practices
- Multiplexers (5) -

= ltis easy to describe multiplexers in VHDL.
= In the dataflow style, a seLECT statement is required.

Litrary IEEE;
use IEEE. std_logic_11ed.all;

satity muKdinaBb is
FoTE
5: in STD_LOAIC_VECTOR (i dowato 0 : -- Sslact imputs. 0-2 ==: A-D
A, B, € It in STO_LOGIC_VECTOR (1 to B)} -- Data bus iaput
T: out ETI_LOGIC_VECTOR (1 to E) -- Deta bus cutput
i
oma mucdingh,

architecturs mmdinb of mukdingb is
begia
with = ssloot ¥ <=

A whea "oo¥,

E whea "oL¥,

© wnea “1o%,

o whaa MLL¥,

(cthers =: 'U') whea others; -- this crsatss an E-bit vector of 'V
SAd MK inEh

6. Combinational Practices
- Multiplexers (6) -

= Inabehavioural architecture, a cask statement is used.

architecturs DukdinBp of DuKdinBb is
tagia
precsss (s, A, B €, D)
tagin
cass 5 is
when "O0% =» ¥ <= A;
when MOLM = ¥ c= B
whea "l =» ¥ <= O
whea "LLM = ¥ e= I;
when others =: ¥ <= (others =: 'D'); -- B-bit vactor of 'D'

= ltis easy to customise the selection criteria in a VHDL multiplexer
program.

6. Combinational Practices
- XOR and Parity Circuits (1) -

= An Exclusive-OR (XOR) gate is a 2-input gate xer @en
whose output is 1, if exactly one of its inputs is ” M :oaa. E.H%‘.
1. o 1 1 0

= An XOR gate produces a 1 output if its input are roo o
different. — -

= An Exclusive-NOR (XNOR) is just the opposite: it produces a 1 output if its
inputs are the same.

= The XOR operation is denoted by the symbol ®.

= X®Y=XY+XY

6. Combinational Practices
- XOR and Parity Circuits (2) -

= There are 4 symbols for each XOR and XNOR function.

= These alternatives are a consequence of the following rule:

- Any two signals (inputs or output) of an XOR or XNOR gate may be
complemented without changing the resulting logic function.

= In bubble-to-bubble design we choose the symbol that is most expressive of
the logic function being performed.

6. Combinational Practices
- XOR and Parity Circuits (3) -

n XOR gates may be cascadedto
form a circuit with n+1 inputs and a mg
single output. This is a odd-parity "

circuit, because its outputis 1ifan) Do
odd number of its inputs are 1.

If the output of either circuit is "
inverted, we get an even-parity
circuit, whose output is 1 if an even "
number of its inputs are 1.

6. Combinational Practices
- XOR and Parity Circuits (4) -

= VHDL provides the primitive operators xor and xnor.
= A 3-input XOR device can be specified in VHDL dataflow style program.

library IFEE:!
uss IEEE.std_logic 1184 .all:
At ity vxor? ix

Fort LA, E, C! in SID_LOGIC!

¥ out STD_LaaIc]:

2] vNoT 2!
architeoturs vRor? of vxor? ix
te3in

¥ += A MOr E HOT !
=md ¥HoT 3!

6. Combinational Practices
- XOR and Parity Circuits (5) -

library IEEE:!
use IEEE.std_logic_ 1164 .all:

= A 9-input parity function
ot ity paritys is

can be MUmo_ﬁ_mQ port (I: i STO_LOGIC_WECTOR (1 to 91!

behaviourally. EVEN, ODD: out SID_LOGIC):
oad paTityd:
architecture paritysp of paritys is
begin
procoss (1)
variabls p ot STD_LOGIC:

begia
P o= Iiil:
for j ia Zto % loop
it I(j) = 'i' thea p := ;Act p: ead i1
=ad Loop!
oD = i

EVEH <= act p:
= process!
=ad parityip!

6. Combinational Practices

- Comparators (1) -

= Comparing two binary words is a common operation in computers.

= Acircuit that compares 2 binary words and indicates whether they are
equal is a comparator.

= Some comparators interpret their input as signed or unsigned numbers
and also indicate an arithmetic relationship (greater or less than) between
the words.

= These circuits are often called magnitude comparators.
= XOR and XNOR gates can be viewed as 1-bit comparators.

= The DIFF output is asserted if | T

Al a
the inputs are different. Bo—2

DIFF
n

6. Combinational Practices

- Comparators (2) -

= The outputs of 4 XOR gates can be ORed to create a 4-bit comparator.

FAwEE

11 DIFF3

= The DIFF output is asserted if any of the input-bit pairs are different.
= This circuit can be easily adapted to any number of bits per word.

6. Combinational Practices

- Comparators (3) -

= An iterative circuit is a combinational circuit with the following structure.

primary inputs

Ply cascading Fl, cascaing Floy
b inpun b cutpul §
FI /~/ FI \\ FI
Ca G Gz G S
—| 6 modie CO——(Cl modie CO——> = » » ——{¢ modie COF—
\ FO RO] /
beundary : : ﬁ bounddary
s ourpUts
PGy PO POy

primary oUfuE

= The circuit contains n identical modules, each of which has both primary
inputs and outputs and cascading inputs and outputs.

= The left-most cascading inputs are usually connected to fixed values.

6. Combinational Practices

- Comparators (4) -

= Two n-bit values X and Y can be compared one bit at a time using a single bit
EQ, at each step to keep track of whether all of the bit-pairs have been equal
so far:
« 1.SetEQ,to1andsetito0.
2.IfEQ;is 1 and X=Y,, set EQ,,; to 1.
Else set EQ,,, to 0. B

oy GMP

n [=#]]
3. Increment i.
4. 1fi<n, gotostep 2.
B Yo 1 W X[N-1) ¥[N-1)
x A x Y X Y
[— mo_o:_umoo Ean mo_o:_umoo S =S L)) mo_o:_umoo EQN

6. Combinational Practices

- Comparators (5) -

= Several MSI comparators have been developed commercially.
= The 74x85 is a 4-bit comparator.

Fd¥Es

= |t provides a greater-than output, a less-than output El prew——
and an equal output. > wEqBIN AEQEOLT |
L - AGTEIN AGTEQUT
= The 74x85 also has cascading inputs for combining o
multiple chips to create comparators for more than 4 =
bits. o 4
= AGTBOUT = (A>B) + (A=B) - AGTBIN iy
AEQBOUT = (A=B) - AEQBIN =

ALTBOUT = (A<B) + (A=B) - ALTBIN

6. Combinational Practices

- Comparators (6) -

With three 74x85 circuits, a 12-bit comparator can be built.

THES F4NES s

ALTEIN ALTEOUT
AEQEIN AEQROUT
AGTEIN AGTBOUT

ALTEIN ALTEOUT
AEQEIN AEQROUT
AGTBIN AGTEOUT
Ao
Eo
Al
B1

ALTEIN ALTEOUT
AEQBIN AEQEOUT
AGTBIN AGTEOUT

TERE

6. Combinational Practices

- Comparators (7) -

= VHDL has comparison operators for all of its built-in types.

= Equality (=) and inequality (/=) operators apply to all types.

= For array and record types, the operands must have equal size and
structure, and the operands are compared component by component.

= VHDL's other comparison operators (>, <, >=, <=) apply only to
integers, enumerated types and one-dimensional arrays of
enumeration or integer types.

6. Combinational Practices
- Adders, Subtractors and ALUs (1) -

= Addition is the most commonly performed arithmetic operation in digital
systems.

= An adder combines two arithmetic operands using the addition rules.

= The same addition rules, and hence the same adders, are used for both
unsigned and 2's complement numbers.

= An adder can perform subtraction as the addition of the minuend and the
complemented subtrahend.

= A subtractor can also be built to perform subtraction directly.

= An ALU (Arithmetic and Logic Unit) performs addition, subtraction, and
other logical operations.

6. Combinational Practices
- Adders, Subtractors and ALUs (2) -

The simplest adder, called a half adder, adds two 1-bit operands X and Y,
producing a 2-bit sum.

The sum can range from 0 to 2, which requires two bits to express.

The low-order bit of the sum may be named HS (half sum).

The high-order bit of the sum may be named CO (carry out).

The following equations can be written:

HS=X®Y=XY +XY

Co=XY

To add operands with more than one bit, carries between bit positions must
be provided.

6. Combinational Practices
- Adders, Subtractors and ALUs (3) -

The building block for this operation is X —

called a full adder. fimam g Ip ot
Besides the addend-bit inputs Xand Y, a
full adder has a carry-bit input, CIN.

The sum of the 3 bits can range from 0 to
3, which can still be expressed with just
two output bits, S and COUT.

CouT

full adder * *
The following equations can be written: _x X
S =X®Y®CN —r ST o omfe
—CIN COUT [—
COUT =XY + X-CIN +Y-CIN 8

!

6. Combinational Practices
- Adders, Subtractors and ALUs (4) -

Two binary words, each with n bits, can be added using a ripple adder.

A ripple adder is a cascade of n full-adders stages, each of which handles
one bit.

*3 ¥3 ¥z ¥z ¥ » ¥ Yo

T o P N R

x K X Y 3 K B ki

g, =~—— GOUT GIN =——GOUT GIN

COUT GIN|[a—— GOUT GIN fa— g,

s s s s

' 1 1 1

53 sz 5 =0

The carry input to the least significant bit (c,) is usually set to 0.

The carry output of each full adder is connected to the carry input of the next
most significant full adder.

6. Combinational Practices
- Adders, Subtractors and ALUs (5) -

= The binary subtraction operation is analogous to binary addition.
= Afull subtractor has inputs X (minuend), Y (subtrahend) and BIN (borrow
in) and outputs D (difference) and BOUT (borrow out).
= The following equations can be written:
D =X®Y®BIN
BOUT=X"Y + X"BIN + Y-BIN
= These equations are similar to the equations for a full adder.
D =X®Y®BIN
BOUT= XY’ + X'-BIN’ + Y"BIN'
= A full subtractor can be built from a full adder. X-Y = X+Y'+1

6. Combinational Practices
- Adders, Subtractors and ALUs (6) -

| | | | L

X ¥ X ¥
Fullarkr fill stractr
- COUT GIN f+—— = EOUT EIN f4—— = BOUT BIN [ye——
3 D D
! 1 !
¥al Pal ¥nz Yoz ¥ Yo
I3 ¥ X ¥ 3 ¥
b_lay b laz b_L, b_la
blaa— BOUT EBINjQ=———(BEOUT EINE> sae o BouT EBINED 1
D D D
dpy do o

6. Combinational Practices
- Adders, Subtractors and ALUs (7) -

An ALU is a combinational circuit that can perform Tx 151
several arithmetic and logical operations on a pair of b-
bit operands.

The operation to be performed is specified by a set of
function-select inputs.

Typical MSI ALUs have 4-bit operands and three to five
function-select inputs, allowing up to 32 different
functions to be performed.

A 74x181 IC has one 4-bit ALU.

The operation performed by the 74x181 is selected by
the M and S3-S0 inputs.

o

L]
el

k| G

T

&
i

7

[

2]

-1

Fo

BEO=8K

Sk
7t

Al F1

S
BERET

$

Fz

—|u
ma

$
T 7

Fz

}

couT

6. Combinational Practices
- Adders, Subtractors and ALUs (8) -

Inpuix Function

1 =2 &1 =0 M=0 [arithmetic) M =1 fiogic]
o [o o F= A minus 1 plus GIN F=A'

0] 0 1 F=A.Eminus 1 plus CIN F=A'+E
o] 1 o F= 4. E minus 1 plusCIN F=A"+E
o o 1 1 F=1111 plus ©IN F=1ii1
0 1 0 0 F=Aplus(A + B plus CIN F=A"E
o 1 o 1 F=p. Ephs(A+E)plusCIN - F=E

Q 1 1 Q F=Aminus Bminus1 plusCIN~ F=AE B
1} 1 1 1 F=A+B plzCIN F=A+E
1] o 0 F=Aplus(A+BIplus CIN F=A"E
1] 0 1 F=4AplusE plus CIN F=A®E
1] 1 o F=a. B plus(A+E)plusCIN F=E

1 o 1 1 F=A+E plus CIN F=A+E
1 1 0] F=4Aplus A plus CIN F =0000
1 1 o 1 F=4.Eplus A plus CIN F=A E
1 1 1 o F=A-E plush plusCIN F=A B
1 1 1 1 F=ApluzCIN F=hA

6. Combinational Practices
- Adders, Subtractors and ALUs (9) -

library IEEE;
use IEEE.std logic_1164.all;
use IEEE.std_logic_arith.all;

entity vaddshr is
port (
A, B, C, D: in SIGNED (7 downto 0);
SEL: in STD_LOGIC;
S: out SIGNED (7 downto 0)
)i
end vaddshr;

architecture vaddshr_arch of vaddshr is
begin

S <= A + B when SEL = '1' else C + D;
end vaddshr_arch;

6. Combinational Practices
- Multipliers (1) -
The traditional algorithm to multiply binary numbers uses shifts and adds to
obtain the result.

However, it is not the only solution to implement a multiplier.

Given 2 n-bit inputs (X, Y), we can write a truth table that expresses the 2n-
bit product P=XxY as a combinational function of X and Y.

Most approaches to combinational multipliers are based on the traditional
shift-and-add algorithm.

JoXo _

v [y e |

s[pulpe] pe e[pol [s o e [ps [Pl [&

6. Combinational Practices 6. Combinational Practices
- Multipliers (2) - - Multipliers (3) -

library IEEE;
use IEEE.std logic_1164.all;
use IEEE.std_logic_arith.all;

entity vmulsxsi is
port (
X: in UNSIGNED (7 downto 0);
Y: in UNSIGNED (7 downto 0);
P: out UNSIGNED (15 downto 0)
)i
end vmulsxsi;

architecture vmulsxsi_arch of vmulsxsi is
begin

P <= X *Y;
end vmulsxsi_arch;

ralralvalivalivs

