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6. Combinational Practices

- Summary -
« PLDs
= Decoders
« 7-Segment Decoders
= Encoders

= Multiplexers
« XOR and Parity Circuits
= Comparators

= Adders, Subtractors and ALUs
= Multipliers




6. Combinational Practices
- PLDs (1) -

= The first PLDs were Programmable Logic Arrays (PLAS).

« APLAIs a combinational, 2-level AND-OR device that can be
programmed to realise any sum-of-products logic expression.

« APLAIs limited by:
— the number of inputs (n)
- the number of outputs (m)
— the number of product terms (p)

«  We refer to an “n x m PLA with p product terms”. Usually, p << 2".

= Ann x m PLA with p product terms contains p 2n-input AND gates and
m p-input OR gates.




6. Combinational Practices
- PLDs (2) -

Each input is connected to a
buffer that produces a true and |2
a complemented version of the =%

signal.
. . P17 po pay’ pa~y p5 Pe™y
Potential connections are ~ o

indicated by Xs. -

The device is programmed by ‘
establishing the needed ) o
connections.

= The connections are made by A 4x3 PLA with 6 product terms.

fuses.




6. Combinational Practices

- PLDs (3) -
« Compact representation of the = O1=1112+ 11121314’
4x3 PLA with 6 product terms. 02=1113"+11"13:14 + 12
03 =112+ 1113 + [1"12"14’
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6. Combinational Practices

- PLDs (4) -

= Another PLD is PAL (Programmable Array

Logic).
A PAL device has a fixed OR array.

In a PAL, product terms are not shared by
the outputs.

Each output has a fixed and unique set of
product terms that it can use.

« A PAL is usually faster than a similar PLA.
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6. Combinational Practices
- PLDs (5) -

= Part of the logic diagram of the PAL 16L8.

;
p (1

al1z3a 18 19 DFIZZF Z 2SR eT B IZini]

a [ ™y

2

a 1

3 LISy

]

e

T

[EJE . j
IE ] i

B [y

]

1 (15

— 02

=

)




6. Combinational Practices
- Decoders (1) -

A decoder Is a circuit that converts coded inputs into coded outputs.

Usually, the input code has fewer bits than the output code.
The most common decoder is an n-to-2" or binary decoder.

A binary decoder is used when one of 2" outputs needs to be activated

based on an n-bit input value.
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6. Combinational Practices
- Decoders (2) -

A 74x139 IC has two independent 2-to-4 decoders.
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6. Combinational Practices

- Decoders (3) -

A 74x138 IC has one 3-to-8 decoder.
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6. Combinational Practices
- Decoders (4) -

= Multiple decoders can be
used to decode larger code

words. NG
= The top decoder (U1) is -
enabled when N3 is 0, and 1]
the bottom decoder (U2) is
enabled when N3 is 1. :
= To handle larger code words, ;.3
decoders can be cascaded |, Yappl pecizL
hierarchically. 18 volor_ orot L
—‘f'.-'IO— DECIS_L

L2




6. Combinational Practices

To handle larger code
words, decoders can be
cascaded hierarchically.

A 5-t0-32 decoder can be
built with one 2-to-4 and four
3-to-8 decoders.

The 2-to-4 decoder treats
the high order bits.

The 3-t0-8 decoders
treat the low-order bits.

- Decoders (5) -
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6. Combinational Practices
- Decoders (6) -

= There are several ways to write decoders in VHDL.

= The most primitive would be to write a structural description equivalent to
the logic circuit on slide 7.

likrary IEEE;
uze IEEE.=td logic_1l164_m11;
entity Vitcddeco iz
port (1IN0, 11, EH: in STDh_LoOGICT
i, Y1, ¥2, ¥3: cut STD _LOSIC ) ;
end Vitoddemo;

&ar chitecture Vitocddeco = of Vitoddec iz

m=ignal HOTIO, HOTI1: STD_LOSIC;

component inw port (I: in STD LOGIC; O: out STD _LOGIC )7 =nd component;

component Aand3 port (IO, 11, IZ: in STL LOSIC; O:- out STOD_LOGIC ] 7 =od component
Eegin

Ul: inw port map (I0,HOTION;

U2: inv port map (I1,HOTI1);

U3: &and3 port map (HOTIO,ROTI1, EW,Y0) ;

Ud: sand3 port map | I0,1k20TI1,EN,Y1);
US: and3d port map (HOTIO, I1,EH,Y2);
UE: and3d port map Ino, I1,EH,¥31;

end Vitoddec =5




6. Combinational Practices

- Decoders (/) -

= The second alternative is using the dataflow style.

likrarcy IEEE;
use IEEE.std_logic l1l64.411;

entity VWTdx138 ix

port (Gl, GZR_L, G2B_L: in STD _LOGIC; —— =n&able inputs
Az din S5TD_LOGIC VECTOE (2 downko U] —— pelect inputs
¥ L: ont S5STD LOGIC_VECTOE (0 to T1 175 —— decoded output =

=od WT4x133;

architecture WTdxl3i8 = of WTAx138 ixm
signal ¥_L_i: 5TD_LOGIC VECTOR (0 to T1;
Eergin
with A select ¥_L_i <=
01111111 " wheo "OOo'",
10111111 " wheao "Ool",
11211111 " wheo "O0lo",
"11101111" wheo "011",
11110111 " wheo "lao",
11111011 " wheo "1ol",
11111101 " wheo "110",
11111110 " wheao "111",
"11111111" when others;

¥ L 4= %Y L i when (Gl &and not G2A_L &and oot GZE LI="'1" #lze "11111111";

end VT4dx133 _m;

El




6. Combinational Practices
- Decoders (8) -

Another alternative is using the behavioral style.

architecture VWiktoddeco_co of Viktoldeco iz

begin
Process =1, G2, G3, Al
warisbhle i: IHTEGEE range 0 to T;
Eegin
F o«<= "aooaooooo";
if (B] and G2 &and G3] = 'l then

for i do 0 k= T loop
if i=COMV_IHNTEGSER(A] theon (il <= '1'; end if;
end loopr
=nd if;
end process;
end Vitocddeco_co;




6. Combinational Practices
- /-Segment Decoders (1) -

= A 7-segment display is used in watches, calculators, and devices to show
decimal data.

« Adigitis displayed by illuminating a subset of the 7 line segments.

Ll [ ﬂ ﬁ 1700
- L z/[] A f UM[U

« A 7-segment decoder has a 4-bit BCD as its input and the 7-segment code
as its output.




Exercise 1:

Oulput's

6. Combinational Practices
- /-Segment Decoders (2) -
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6. Combinational Practices
- Encoders (1) -

= An encoder is a circuit whose output code has normally fewer bits than its
input code.

= The simplest encoder to build is a 2"-to-n or binary encoder. It has the
opposite function as a binary decoder.

Equations for an 8-to-3 encoder : Binary

YO=11+I13+15+17

Y1=12+13+16+17 r—{ o YO [—

Y2=14+15+16+17 H A R QO
. Only 1inputis active ata time. What = "™*§ - |- |

happens if 2 inputs are asserted (ex: W pee Yo

12 and 14)?




6. Combinational Practices

- Encoders (2) -
Fieq;:?st
To implement a request e
encoder, the binary ’ REQH —
encoder does not work! REQ2 — —
. R REG:E — I ,
It assumes thatonly 1input o semee & .. © P numbar
Is asserted. L |
., REQN ——

If multiple requests can be made simultaneously, a priority must be
assigned to the input lines.

When multiple requests are made, the device (priority encoder)
produces the number of the highest-priority requestor.




6. Combinational Practices

- Encoders (3) -
Priarity
encoder
: . —
Input |7 has the highest priority. . l; e
= QOutputs A2-A0 contain the number of the ] 'li i; —
highest-priority asserted input, if any. i
- The IDLE output is asserted if no inputs are 1 P
asserted. T

Intermediate variable Hiis 1, if li

is the highest priority 1-input: - A i HT+H3+HS + H/
H7 = |7 H6 = I6:|7’ A1=H2 +H3 +H6 + H/

H5 = I5:16™17"  H4 = 14-15"16"I7 A2=Ha +HS+H6 + Hr
... (similar equations for H3-HO) = IDLE=10%11"12"13"14"15"16™[7




6. Combinational Practices

- Multiplexers (1) -
multiplexer
« A multiplexer (mux) is a digital switch. enable EN
It connects data from one of n sources to seloct == SEL
Its output. , :,b::, %
= The SEL input selects among the n :f::, Of b
sources, s0 s =| log,n | S N
When EN=0, Y=0; e
When EN=1, the mux is working.

Multiplexers are used in computers between the processor’s registers
and its ALU, to select among a set of registers which one is connected to
the ALU.




6. Combinational Practices
- Multiplexers (2) -

A 74x151 IC has one 8- 741151

Inpubsr
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cI:f'

input, 1-bit multiplexer.

m
=
r
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o

The select inputs are :
named A,B,C, where C is
the MSB.

The enable input EN_L is
active low.

Both active-low and high
versions of the output are
provided
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6. Combinational Practices

- Multiplexers (3) -
. _ s
« A 74x157 IC has one 2-input, 4-bit s
multiplexer. : A ] -
The select input is S. : m 2V —
The enable input G_L is active : w O
|OW - 31; 4y L2
= The truth table was extended and
Inputs appear at the outputs tnputs Dubputs
columns. GL S 1Y 2y ay 4y
1 ¥ 0 0 0 0
0 0 1A & A 1A a4
0 1 16 2B A6 dB




6. Combinational Practices

- Multiplexers (4) -

A multiplexer can be used to select  sqca
one of n sources of data to transmit  =7¢°

on a bus. e :
At the other end, a demultiplexer

can be used to route the bus to one SACSEL
of m destinations.

The function of a multiplexer is the inverse
of a demultiplexer’s. SACDATA

A 1-bit, n-output demultiplexer has one DSTSELO
data input and s inputs to select one of the
n=2% data outputs.

2-to-4 deocodar

m

Yo
1
Y2
Y3

——— DSTA
—— DSTE
—— D3TC

| " parz

DSTODATA
DST1DATA
DST2DATA
DSTADATA




6. Combinational Practices
- Multiplexers (5) -

= |tis easy to describe multiplexers in VHDL.
« In the dataflow style, a seLECT statement is required.

library IEEE:
uza IEEL. =td_1log io_1imd.&11:

amtity mxdinEb isx

Fort |
! im STD_LOJIC_VWECTOR (1 dowatos 071 -- SRlact igputs=, 0-2 ==: A-D
A. E, O, DI im STD_LOQIC_VECTOR (1 to Bl! —- Laka bus :i..?:l]:-ut
T out STD_LOdIC _VECTOR [1 to E) == Data bus output
1!
24d IIKAiaEb!
architscturs DUKAinEE: of DUKdimPbh ix
tr=gina
wWith = =s=la-t T <=
A wham YooW¥,
E whaa YoL¥,
C wham Hlg¥,
D wham HlIlLY,
(others = '1') wheas others: —-- thiszs orsatess aa BE-bit wecotor of '1'

2md ik dimPh




6. Combinational Practices
- Multiplexers (6) -

In a behavioural architecture, a case statement is used.

architecturs nukdinBp of nuwdiaPfb isx
t=gia
proo=sx (s, A, E, O, D]
tgin
oAzE T oix
wh=ana "oo¢
whan HoLH
wh=n HloH
whan "11M
wh=aa others =: ¥ -
=and cass!
2ad process!
2nd mkdinep!

MM OH M

(oth=rs = '11'): -- B-bit we-tor of '

It is easy to customise the selection criteria in a VHDL multiplexer
program.




6. Combinational Practices
- XOR and Parity Circuits (1) -

An Exclusive-OR (XOR) gate is a 2-input gate T xe¥y @ow
whose output is 1, if exactly one of its inputs is ‘: : f”ﬂ””*’ f”'“l“”*'

1 : 0 1 1 Q

An XOR gate produces a 1 output if its input are Lo 1 0
different. — 1

An Exclusive-NOR (XNOR) is just the opposite: it produces a 1 output if its
inputs are the same.

The XOR operation is denoted by the symbol @.
X®Y=XY+XY




6. Combinational Practices
- XOR and Parity Circuits (2) -

= There are 4 symbols for each XOR and XNOR function.

= These alternatives are a consequence of the following rule:

- Any two signals (inputs or output) of an XOR or XNOR gate may be
complemented without changing the resulting logic function.

= In bubble-to-bubble design we choose the symbol that is most expressive of
the logic function being performed.




= n XOR gates may be cascadedto |,

6. Combinational Practices
- XOR and Parity Circuits (3) -

form a circuit with n+1 inputsanda .

12

single output. This is a odd-parity

circuit, because its output is 1 if an N

odd number of its inputs are 1.

If the output of either circuit is !
inverted, we get an even-parity
circuit, whose output is 1 if an even «

L

number of its inputs are 1.

M
IN

CoD

CoD




6. Combinational Practices
- XOR and Parity Circuits (4) -

= VHDL provides the primitive operators xor and xnor.
« A 3-input XOR device can be specified in VHDL dataflow style program.

library IEEE!
1uz= IIII:E.!.'I:-:'I_].-:-:J:L-:'_:I. 144 &1l
@At ity wMor® ix
port (A, E, ©! 1m STD_LOGIC!
T ot STD_LassIc ]!
2 yRHor 2!

Ar-~hite-ture vyyXor? of vxor? is

bagia
T = A Mor E Mor O
2nd ¥HOI 2!




6. Combinational Practices
- XOR and Parity Circuits (5) -

« A 9-input parity function
can be specified
behaviourally.

litrary IEEE!
us= IIII:E.:rl:d_l-:-:_l:i.-:'_i:I.I!nI.dll_:

@t ity parityps L=

port (I: im STD _LOGIC_VWECTOR (1 to 9!

EVEN, oDD: out E=TD_LOaGIc )
22 parityy:
Aarchitecture paritysyp of paritys is
bagina
pProc=ss (I
vAariabla p ! STD_LOGIC!

bagLa
P !'= I(1):;
for j ima X to 9 lLoop
if If(j) = '1' thea p '= act p! =2 if:
=2nd loop!
QDD <= P

EVEH += mnot p!
=] process!
223 parityyp!




6. Combinational Practices
- Comparators (1) -

= Comparing two binary words is a common operation in computers.
= A circuit that compares 2 binary words and indicates whether they are

equal is a comparator.

Some comparators interpret their input as signed or unsigned numbers
and also indicate an arithmetic relationship (greater or less than) between
the words.

These circuits are often called magnitude comparators.
XOR and XNOR gates can be viewed as 1-bit comparators.

- The DIFF output is asserted if |y

AD a

the inputs are different. Eo—= )] ; DIFF




6. Combinational Practices

- Comparators (2) -
= The outputs of 4 XOR gates can be ORed to create a 4-bit comparator.
TdxE5

AD— 3 DIFFo
E <
. L1 : TdxGE
A1 : s DIFF1 1 D L -
=3 Lz 1 ;

L - ED—DIFF

g 5

:E - s DIFFz : . DRz L m

IR Uz
AT—= 11 DIFF3
B3 1a

I

« The DIFF output is asserted if any of the input-bit pairs are different.
= This circuit can be easily adapted to any number of bits per word.




6. Combinational Practices
- Comparators (3) -

= An iterative circuit is a combinational circuit with the following structure.

primary inputs
n

P b

Flg ca=cading Fl, ca=cading Flg
Fl \I\ Fl // Fl
Gl:l G1 GE G.rr—1 G.rr
—Cl module COP——Cl modie COF——5 w0 0 ——|Cl module COF—
FO FO FO \
Boundary boundary
meul oulpuls
PO, FO, PO,
r
Tt
primary auput

= The circuit contains n identical modules, each of which has both primary
iInputs and outputs and cascading inputs and outputs.

= The left-most cascading inputs are usually connected to fixed values.




6. Combinational Practices
- Comparators (4) -

« Two n-bit values X and Y can be compared one bit at a time using a single bit
EQ, at each step to keep track of whether all of the bit-pairs have been equal
so far:

1. Set EQ, to 1 and set i to 0. s % o
2. IFEQ,is 1 and X=Y,, set EQ,,, to 1. T

Else set EQ,,, 10 0. I D_” =
3. Increment i. '
4.1f i< n, go to step 2.

Yoo Yo X1 ¥ HIN-1Y YIN-1

L L

3 ¥ 3 ¥ ¥ ¥
G P EQ LGP EQr EQfN-1y| __ ©MF EQN

1 —=| B B3O —=| B B —= s s ———=| B BaO ——=




6. Combinational Practices
- Comparators (5) -

Several MS| comparators have been developed commercially.
The 74x85 Is a 4-bit comparator.

TdxEs

It provides a greater-than output, a less-than output S E—
and an equal output. —|ABQEIN ABQBOUT |-
: : o AGTEIN AGTEIUT
The 74x85 also has cascading inputs for combining e
multiple chips to create comparators for more than 4 1
bits. - 3
AGTBOUT = (A>B) + (A=B) - AGTBIN e
AEQBOUT = (A=B) - AEQBIN e

ALTBOUT = (A<B) + (A=B) - ALTBIN




- Comparators (6) -

6. Combinational Practices

With three 74x85 circuits, a 12-bit comparator can be built.

Td¥35

5
ER T4¥55 T4¥55
;fé;:j z ALTEIN  ALTEOUT ; :::I'E';i z ALTEIN  ALTEOUT ; ;:':I'E'WE z
| AEQBIN AEQEOLT = | AEGEIN AEQBOLT = .'-:GGT'\"EIIE -
AGTEIN ASTEOUT AGTEIN ASTEOUT
1 Xho i [=] 1 wh4a 1 1 xha 1
g 1O A Y0 A Y0
[n] g B L3 g B d g
XD 1= b1 L] 12 AL 12
w0 Al 0 Al 0
:{Dl 11 E'l :{DE 11 E'l :{Dg 11
ﬁr-ni 13 A Mr.nﬁ 13 A a j Lu] 12
:{DE 14 Er :{Df 14 Er - na 14
— 3 15 A= YD: 15 A= — 11 15
3 1 33 v 1 33 11 1
XD[o-11]
YD[e-11]

ALTEIN  ALTEOUT
ABIBIN ABQBOUT
AGTEIN  AGTEOLUT

A
B
A
En
A2
Ez
AZ
E=




6. Combinational Practices
- Comparators (/) -

VHDL has comparison operators for all of its built-in types.

Equality (=) and inequality (/=) operators apply to all types.

For array and record types, the operands must have equal size and
structure, and the operands are compared component by component.
VHDL's other comparison operators (>, <, >=, <=) apply only to

integers, enumerated types and one-dimensional arrays of
enumeration or integer types.




6. Combinational Practices
- Adders, Subtractors and ALUs (1) -

= Addition is the most commonly performed arithmetic operation in digital
systems.

= An adder combines two arithmetic operands using the addition rules.

= The same addition rules, and hence the same adders, are used for both
unsigned and 2's complement numbers.

= An adder can perform subtraction as the addition of the minuend and the
complemented subtrahend.

= A subtractor can also be built to perform subtraction directly.

« An ALU (Arithmetic and Logic Unit) performs addition, subtraction, and
other logical operations.




6. Combinational Practices
- Adders, Subtractors and ALUs (2) -

= The simplest adder, called a half adder, adds two 1-bit operands X and Y,
producing a 2-bit sum.

= The sum can range from 0 to 2, which requires two bits to express.
= The low-order bit of the sum may be named HS (half sum).
= The high-order bit of the sum may be named CO (carry out).

= The following equations can be written:
HS=X®Y=XY + XY
CO=XY

= To add operands with more than one bit, carries between bit positions must
be provided.




6. Combinational Practices
- Adders, Subtractors and ALUs (3) -

= The building block for this operation is
called a full adder.

= Besides the addend-bit inputs Xand Y, a
full adder has a carry-bit input, CIN.

= The sum of the 3 bits can range from 0 to
3, which can still be expressed with just
two output bits, S and COUT.

= The following equations can be written:
S =X®@Y ®CIN
COUT = XY + X-CIN + Y-CIN

GIN

}.

Ba

full adder * *
¥ ] X v
¥ -] COUT I b
CIN - COUT — .

!




6. Combinational Practices
- Adders, Subtractors and ALUs (4) -

= Two binary words, each with n bits, can be added using a ripple adder.
= Aripple adder is a cascade of n full-adders stages, each of which handles

one bit.

i

¥3

l

x

CaUT  CIM

5

b

i

¥z

|

;

x

b

3 {couT M

5

T

¥

|

|

¥o

|

1

x

b

CaUT  GIM

5

x

b

' lcouT oM

5

1

|

= The carry input to the least significant bit (c,) is usually set to 0.
= The carry output of each full adder is connected to the carry input of the next

most significant full adder.




6. Combinational Practices
- Adders, Subtractors and ALUs (5) -

The binary subtraction operation is analogous to binary addition.

A full subtractor has inputs X (minuend), Y (subtrahend) and BIN (borrow
in) and outputs D (difference) and BOUT (borrow out).

= The following equations can be written:

D =X®Y®BIN
BOUT= XY + X"BIN + Y-BIN

These equations are similar to the equations for a full adder.
D =X®Y ®BIN

BOUT= XY’ + X-BIN' + Y’-BIN’

A full subtractor can be built from a full adder. X-Y = X+Y'+1




6. Combinational Practices
- Adders, Subtractors and ALUs (6) -
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5 o o
¥ Yo ¥nz  ¥nz o ¥o
¥ { ¥ 6 ¥ {
X b x b x b

[ _Li _Lo
Lo =o— BOUT BINO=— ) BOUT EBINE=— see =— R EBOUT  EBIN O=— 1

(B B

! f

!
dn ) dn z oy




6. Combinational Practices
- Adders, Subtractors and ALUs (7) -

= An ALU is a combinational circuit that can perform 151
several arithmetic and logical operations on a pair of b- — 80 -
bit operands. B D ]

« The operation to be performed is specified by a set of - f ol
function-select inputs. e

= Typical MSI ALUs have 4-bit operands and three to five ; R
function-select inputs, allowing up to 32 different A1 F1
functions to be performed. o R

= A 74x181 IC has one 4-bit ALU. = .

_ _ A3 F3 —
= The operation performed by the 74x181 is selected by -

the M and S3-S0 inputs.




6. Combinational Practices
- Adders, Subtractors and ALUs (8) -

Rputs Function
=3 =L =1 =0 M=0 [arithmetic] M =1|Ipgic)}
0 0 0 0 F=A minus 1 plus CIM F=A"
n n n 1 F=A- B minus 1 plus CIM F=A"+E"
n n 1 n F=A- B minus 1 plusCIN F=A"+E
0 0 1 1 F=1111 plus CIM F=1111
0 | 0 0 F=Aplus(A+Eplus CIM F=A"- B
0 | 0 | F=#A B plus(A+E" plus CIM F=E"
0 i i 0 F=2A minus Eminus 1 plus G F=Ath B"
n 1 1 1 F=A+E plu=CIN F=A+E"
1 n n n F=AplusiA+B)plus CIN F=A" B
1 0 0 1 F=A plusB plus CIM F=A®E
i 0 i 0 F=.I’|-E"plu=|;.l’|+E;|pIu=E-II"-l F=B8
1 0 1 1 F=A+E plus CIM F=A+E
1 1 0 ] F=A plus A plus CIM F =0000
1 1 o 1 F=A-BplusAplsCIN F=A-E
1 1 1 0 F=#A-EB" plusA plusCIN F=A-B
1 1 1 1

F=aA plusCiM F=A




6. Combinational Practices
- Adders, Subtractors and ALUs (9) -

library IEEE;
use IEEE.std logic 11e4.all;
use IEEE.std logic arith.all;

entity wvaddshr is
port |
A, B, ¢, D: in SIGNED (7 downto 0) ;
SEL: in STD LOGIC;
S: out SIGNED (7 downto 0)
)

end vaddshr;

architecture vaddshr arch of vaddshr is
begin

S «= A + B when SEL = '"1' else C + D;
end vaddshr arch;




6. Combinational Practices

- Multipliers (1) -
The traditional algorithm to multiply binary numbers uses shifts and adds to
obtain the result.

However, it is not the only solution to implement a multiplier.

Given 2 n-bit inputs (X, Y), we can write a truth table that expresses the 2n-
bit product P=XxY as a combinational function of Xand Y.

Most approaches to combinational multipliers are based on the traditional
shift-and-add algorithm.

YT | VoXs | JoXs | MoXy | JoX3 | MoXz | JoXt | Moo

X7 | X | X5 | & | &3 | &z | X | iXo

Yo X7 | YVoXg | VoXs | VoXy | VoX3 | VoXp | VeX1 | VeXo

Y3X7 | V35 | V35 | V3Xy | V3X3 | V343 | V34X | V34

JAXT | Ve | VaXs | YaXy | VaX3 | VaXo | VaXt | VaXo

Y5&T | VoXg | V5ds | Ve&y | Vs&3 | V&2 | V5] | V540

Y67 | V646 | J6X5 | YoXa | V643 | VeX2 | V6X1 | V6N

+ Y77 | Vixs | Y75 | V7&y | V7&3 | Vixz | VX | V740

Pis | Prau | Pia | Piz | Puu | Pio | Po Ps Pr Pe Ps P4 P3 P2 P1 Po




6. Combinational Practices

- Multipliers (2) -
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6. Combinational Practices
- Multipliers (3) -

library IEEE;
use IEEE.std logic 1164.all;
use IEEE.std logic_arith.all;

entity vmul8x8i is
port {
¥: in UNSIGNED (7 downto 0) ;
Y: in UNSIGNED (7 downto 0);
P: out UNSIGNED (15 downto 0)
) ;

end vmulB8xEi ;

architecture vmulg8x8i arch of wvmul8x8i is
begin

P <= X*X;
end vmul8xB8i arch;




