Sistemas Digitais I
LESI - 2° ano

Unit 5 - VHDL

Jodo Miguel Fernandes
www.di.uminho.pt/~jmf

DEP. DE INFORMATICA

/

V2020 | EscoLADE ENGENHARIA

UNIVERSIDADE DO MINHO

-~

5. VHDL

- Summary -

= Design flow

= Entities and Architectures
= Types

= Functions and Procedures
= Libraries and Packages
= Structural Design

= Dataflow Design

= Behavioural Design

= Time Dimension

= Simulation

5. VHDL

- Introduction -

= VHDL was developed, in the mid-1980s, by DoD and IEEE.

= VHDL stands for VHSIC Hardware Description Language;
VHSIC stands for Very High Speed Integrated Circuit.
= VHDL has the following features:
- Designs may be decomposed hierarchically.
- Each design element has both an interface and a behavioural specification.

- Behavioural specifications can use either an algorithm or a structure to define
the element's operation.

- Concurrency, timing, and clocking can all be modelled.
- The logical operation and timing behaviour of a design can be simulated.

5. VHDL

- Design flow -

= VHDL started out as a documentation and modelling language, allowing the
behaviour of designs to be specified and simulated.

= Synthesis tools are also commercially available. A synthesis tool can create
logic-circuit structures directly from VHDL specifications.

simulation?
coding || compilation

verification

steps block diagram

front-end A hierarchy/ F
Iy

! (very painiull) {pairiul, but not uncommon)

back-end fitting’ 7 timing 7
steps A H- syntresis H place+route verification 7

5. VHDL

- Entities and Architectures (1) -

= VHDL was designed with the principles of structured programming.

= Pascal and Ada influenced the design of VHDL.

= Aninterface defines the boundaries of a hardware module, while hiding its
internal details.

= A VHDL entity is a declaration of a
module’s inputs and outputs.

= A VHDL architecture is a detailed
description of the module’s internal
structure or behaviour.

v entity

architecture

5. VHDL

- Entities and Architectures (2) -

entity A

An architecture may use other esen

entities. —~

A high-level architecture may

use a lower-level entity b
multiple times. wecre®
Multiple top-level — =~

architectures may use the
same lower-level entity.
This forms the basis for
hierarchical system design.

architecture E architecture F

5. VHDL

- Entities and Architectures (3) -

In the text file of a VHDL program, the entity declaration
and the architecture definition are separated.

textfile (e.g

entity Inhibit is
port I(X,¥: in BIT;
Z: out BITI;

end Inhibit;

architecture Inhibit_arch of Inhikit is
begin

Z <= '1' when X='1" and Y='0' el=e '0°";
end Inhibit_arch;

architecture definition

The language is not case sensitive.
Comments begin with 2 hyphens (--) and finish at the end of the line.

VHDL defines many reserved words (port, is, in, out, begin, end,
entity, architecture, if, case, v

5. VHDL

- Entities and Architectures (4) -

= Syntax of an entity declaration:

entity entitp-nome is
part (signal-rames : mode signal-type;
signal_names : mode signal-type;

signal-names : mode signal-type) ;
end enrry-nate ;

= mode specifies the signal direction:
- in:input to the entity
- out: output of the entity
- buffer: output of the entity (value can be read inside the architecture)
- inout: input and output of the entity.

= signal-type is a built-in or user-defined signal type.

5. VHDL

- Entities and Architectures (5) -

Syntax of an architecture definition:

architecture arhirciuw-name of entity-rame i=
type declarations
stgnal deciarations
constant declarations
fnction dafinitions
procadure definitions
component declararions
begin
CORCUFIERT-SIARIERT

concurment-statement
and architecture-rame ;

The declarations can appear in any order.

In signal declarations, internal signals to the architecture are defined:
signal signal-names : signal-type;

5. VHDL

- Types (1) -

= All signals, variables, and constants must have an associated type.

= A type specifies the set of valid values for the object and also the operators
that can be applied it = ADT (similar concept to OO class).

= VHDL is a strongly typed language.
= VHDL has the following pre-defined types:

bit character severity level
bit_vector integer string
boolean real time

+ integer includes the range -2 147 483 647 through +2 147 483 647.
= boolean has two values, true and false.
» character includes the characters in the ISO 8-bit character set.

5. VHDL

- Types (2) -

Built-in operators for integer and boolean types.

integer Opersiors bool=an Qpermiors

+ addition and AND

- subteaction or OR

* nand NAND

£ division nor NOR

mod modulo division xor Exclusive OR
rem modulo remainder xnor Exclusive NOR
abs absolute value not complementation

++ exponentiation

5. VHDL

- Types (3) -

= User-defined types are common in VHDL programs.
= Enumerated types are defined by listing the allowed values.

type type-tiame iz (vafve-fist) ; typs STD_ULOGIC ix= [
*U', -- Uninitialized
*X', -- Faorcing Unknown
'0', -- Eorcimg O
constant constant-name : type ngme 1= valve *1', -- Porcing 1
*Z', -- High Impedance
W', -- Weak Unknewn
LY, —— Weak a
*H', -- Weak 1
*='li —- pon't care
subtype STO_LOGIC is resolved STD_ULOGIC;

subt ype subtype -name Ls type-name start to end;
subt ype subtype name Ls type-name start downto end;

= type traffic_light is (reset, stop, start, go);
= subtype bitnum is integer range 31 downto O0;
= constant BUS_SIZE: integer := 32;

5. VHDL

- Types (4) -

= Array types are also user-defined.

type type-mame i= array(Start to end) of element-type;

type type-pame is arrayistart downto end) of element-type;

type tppe-rame is array(range-tppe) of efement-type;

type type-name is array(range-type range start to end) of element-type;

type type-riante ix= array(range-type range start downto end) of ¢ lement-type;

type monthly_count is array (1 to 12) of integer;
type byte is array (7 downto 0) of STD_LOGIC;

constant WORD_LEN: integer := 32;
type word iLs array (WORD_LEN-1 downte 0) of STD_LOGIC;
constant NUM_REGS: integer i= §;

type reg_file is array (1 to WUM_REGS) of word;

type statecount iz array (traffic_light_statel of integer;

5. VHDL

- Types (5) -

= Array literals can be specified by listing the values in parentheses:
XyZ = A~H-~H-~O-‘H-~H-~O-~O-~H~vm
abc := (0=>'0", 3=>'0', 9=>'0', others=>"1");
= Strings can be used for STD_LOGIC arrays:
xyz = ”11011001";
abc := 70110111110111111";

= Array slices can be specified:
xyz (2 to 4)

= Arrays and array elements can be combined with the concatenation
operator (s):
"07&"17&”12” isequivalentto ~o011z".
B(6 downto 0)&B(7) represents a 1-bitleft rotate of the B array.

abc (9 downto 0)

5. VHDL

- Functions and Procedures (1) -

= A function accepts a set of arguments and returns a result.
= The arguments and the result must have a type.
= Syntax of a function definition.

function fimection-name (
signal-names : signol-type;
stgnal-niames : signol-type;

architecture Inhibit_archf of Inhibit i=

function ButNet [&, B: hit)] return kit i=

. begin
signal-names : signal-type if B = '0' then return a;

) return kIUIN-tPpe iz else return "0°;

type declarations end if;

constant declarations end ButNet;

variable dectorations

Fimetion defmitions begin

procedure definitions Z <= ButMet(X,Y);
begin end Inhibit_archf;

sequental-statement

sequential-starement

end function sname ;

functien COMV_INTEGER (X: STD_LOGIC_VECTOR) return INTEGER is

<—|— U—' variable RESULT: INTEGER;
[} kbegin

. RESULT := 0;
- Functions and for i in X'range locp
RESULT := RESULT #* 2;
Procedures (2) - case Xiil is
when "0' | 'L' =» null;
when "1' | '’ =3 RESULT := RESULT + 1;
whan others = mall;

. end case;
= ltis often necessary to end Loop;
return RESULT;

convert a signal fromone .aa cawv_rursces;

type to another.
= Assume that the following

return STD_LOGIC_VECTOR is

unconstrained array type is

" . variable result: STD_LOGIC_VECTOR (SIZE-1 downto 0);
defined: variable tomp: integer;
begin
type temp := ARG;
STD LOGIC VECTOR is for i in 0 to SIZE-1 loop
- - if (temp mod 2) = 1 then result (i) := 'l1';
array (natural range else result (i) := '0';
<>) of STD_LOGIC; end if;
temp := temp / 2;
end loop;
return result;

end;

function CONV_STD_LOGIC_VECTOR (ARG: INTEGER; SIZE: INTEGER)

5. VHDL

- Functions and Procedures (3) -

= A procedure is similar to a function, but it does not return a result.

= Whereas a function call can be used in the place of an expression, a
procedure call can be used in the place of a statement.

= Procedures allow their arguments to be specified with mode out or inout,
so it is possible for a procedure to “return” a result.

5. VHDL

- Librarfes and Packages (1) -

= Alibrary is a place where the VHDL compiler stores information about a
particular design project.

= For any design, the compiler creates and uses the work library.

= Adesign may have multiple files, each containing different units.

= When afile is compiled, the results are placed in the work library.

= Not all information needed in a design must be in the work library. A
designer may rely on common definitions or functions across a family of
different projects.

= A project can refer libraries containing shared definitions:

library ieee;

5. VHDL

- Libraries and Packages (2) -

Specifying a library gives access to any previously

analysed entities and architectures, but does not ———

give access to types and the like. e ftamsions

A package is a file with definitions of objects mwmmmmmmwwa
(signals, types, constants, functions, procedures, component Procedum: dectarations
declarations) to be used by other programs. e age e i3
A design can use a package: Mhm.mﬂﬁs._

use ieee.std_logic_1164.all; procedue definitions

end package-rome ;

Within the ieee library, the definitions are on file
std_logic_1164.

5. VHDL

- Structural Design (1) -

The body of an architecture is a series of concurrent statements.

Each concurrent statement executes simultaneously with the other
concurrent statements in the same architecture body.

Concurrent statements are necessary to simulate the behaviour of
hardware.

The most basic concurrent statement is the component statement.

tabel: component-name port map (signall, signai2, ..., sigrain) ;

label: comporent-rame port map (porti=rsignall, por2=>signai?, .. ., portn=rsignaln) ;

component -name iS the name of a previously defined entity.
One instance of the entity is created for each component statement.

5. VHDL

- Structural Design (2) -

= Before being instantiated, a component must be declared in the
component declaration in the architecture’s definition.

= A component declaration is essentially the same as the port declaration
part of an entity declaration.

component comparent-name
pert (signal-names : mode signal-type;
stgnal-names © mode sighal-tppe ;

signal-names < mode signat-tppe) ;
end component ;

= The components used in an architecture may be those previously defined
as part of a design, or they may be part of a library.

5. VHDL

- Structural Design (3) -

library IEEE;
use IEEE.std_logic_1164.all;
entity prime is
port [W: in STD_LOGIC_VECTQR (3 downte 0); F: out STD_LOGIC);
end prime;
architecture primel_arch of prime is
signal W3_L, NZ_L, Ml_L: STD_LOGIC;
signal MW3L_WO, W3L_MZL_M1, MZL_M1_MNO0, W2_W1L_NO: STD_LOGIC;
component INV port (I: in STD_LOGIC; O: out STD_LOGIC); end component;
component AMDZ pert (I0,Il: in STD_LOGIC; O: out STD_LOGIC); end component;
component ANDI port (I0,Il,I2: in STD_LOGIC; Q: owut STD_LOGIC); end component;
component QR4 port (I0,I1,I2,I3:in 3TD_LOGIC; Q:out STD_LOGIC);end compenent;
begin
Ul: INV port map (M(3)
UZ: INV port map (M2
U3: INV port map (W (1), N1_]
U4: ANDZ port map (W3_L, M(0), N3L_N0J;
U5: AND2 port map (N3_L, M2_L, Will, N3L_NZL M1}
UG: AND3 port map (N2_L, M(l), W(0), N2L_W1_NO
U?: AWD3 port map (Wi2), M1_L, Wi0), M2 _W1L_NO
US: OR4 port map (N3L N0, W3L_NZL_N1, N2L_W1_ WO, W2_NlL NO, B);
end primel_arch;

5. VHDL

- Structural Design (4) -

= An architecture that uses components is a structural description, since it
describes the structure of signals and entities that realise the entity.

= The generate statement allows repetitive structures to be created.

fakel: for identifier in range generate
concurrent-statement
end generate;

library IEEE;
use IEEE.std_logic_1164.all;
antity inv8 is
port | X: in STD_LOGIC VECTOR (1 to 8);
Y: out STO_IOGIC_VECTOR (1 to &) J;
end inv8;
architecturs invE_arch of inwd is
compenent INV pert (I: in STD_LOGIC; Q:cwut STD_LOGIC); end component;
begin
gl: for b in 1 to § generate
Ul: INV port map (X(b), Yibl);
end generate;
end inv8_arch;

5. VHDL

- Structural Design (5) -

Generic constants can be defined in an entity declaration.

entity entity-name is
generic (corstant-names : constant-type ;
coRstant-names : constant-type ;

CoRstantmames : constant-type) ;
port (signal-names : mode signol-type;
signal-names mode signal-type ;

signal-names : mode signal-type) ;
and entity-rame

Each constant can be used within the respective architecture and the value
is deferred until the entity is instantiated in another architecture, using a
component statement.

Within the component statement, values are assigned to the generic
constants using a generic map clause.

5. VHDL

- Structural Design (6) -

library IEEE;
use IEEE.std logic_1164.all;

entity businv is
generic (WIDTH: positivel;
pert [in STO_LOGIC_VECTOR (WIDTH-1 downte 0);
cut STD_LOGIC_VECTOR (WIDTH-1 deownto 0)],

end businv;

architecture businv_arch of businv is
componant INW port (I: im STD_LOGIC; G: out STD_LOGIC); end componeant;
begin
gl: for b in WIB-1 downto 0 generate
Ul: INV port map (X(b), ¥(b));
end generate;
end businv_arch;

5. VHDL

- Structural Design (7) -

library IEEE;
use TEEE.std logic 1164.all;

entity businv_szompls iz
port (IN8: in STD_LOGIC_VECTOR (7 downto 0);
QUTS: out 3TO_LOGIC_VECTOR (7 dewnto 0);
IN16: in STD_LOGIC_VECTOR (15 downto 0);
OUT1E: out STD_LOGIC_VECTOR (15 downto 0);
IN32: in STD_LOGIC_VECTOR (31 downto 0);
QUT32: ocut SID_LOGIC_VECTOR (31 downte 0] J;

end businv_example;

architecture businv_ex_arch of businv_example iz
compenent busim

generic (WIDTH: positive);

port | X: im STD_LOGIC VECTOR (WIDTH-1 dowate 0);

¥: out STD_LOGIC_VECTOR (WIDTH-1 dowato 01 1/

end component ;
begin
Ul: businv generic map (WIDTH=>8) port map (IW8, OUTS);
UZ: businv generic map (NIDTH=>16) port map (IN1&, OUTL&
U3: businv generic map (WIDTH=>32] port map (IN32, QUTZ2

end businv_ex_acch;

5. VHDL

- Dataflow Design (1) -

= Other concurrent statements allow circuits to be described in terms of
the flow of data and operations on it within the circuit.

= This gives origin to the dataflow description style.
= Syntax of concurrent signal assignments statements.

sigrial-name <= expression;

sigral-name <= expression when boolean-expression else
expression when boolean-expression elze

axpression when baslean expression sLze
expression ;

5. VHDL

- Dataflow Design (2) -

architecture prime2_arch of prime is
=ignal W3L_W0, W3L_W2L_N1, N2L_N1_WN0, WZ_MWIL_WO0: STD_LOGIC;
begin

M3L_NO <= mot N3] and W (0] ;
M3L_MZL_M1 <= not M(3] and not W(2) and Wil) P
MZL_N1_MO <= net W(Zl and Wil) and N0);
WZ_M1L_NO <= W(2) and not Wil] and W(0);

F <= N3L_H0 or M3L_MZL_Nl or N2L N1 W0 or N2 NIL NO;

end primeZ_acch;

architecturs prime3 arch of prime is
=ignal W3L_NO, W3L_M2L_M1, M2L_M1_N0, WZ_N1L_NO: STD_LOGIC;
begin
WIL_NO0 <= "1' when M(3]="0" and W(0)="1" else '0';
W3IL_MWZL_MWl <= 'l' when W(3)='0' and W(2)="'0" and W(l])="1l" else '0*
MZL_M1_MO <= '1* when N(2)='0' and M(1)='1" and W(0)="1"' else '0*
N2 _NMIL N0 <= '1l' when W(2)='"1l"' and W(1)="0" and W(0)='1" el=e '0';
F <= W3L_MO0 or N3L_NZL_Nl or MZL N1_NO or W2 N1L_NO;

end prime3_arch;

5. VHDL

- Dataflow Design (3) -

= Another concurrent statement is the selected signal assignment, which
is similar to a typical CASE constructor.
= Syntax of selected signal assignments.

with expression select
stgnal-name <= sigha{-valve when choices,
stgnat-value when choices,

stgral-value when choives;

architecture primed_arch of prime is architecture prime5_arch of prime is

bagin bagin
with W =eslect with CONV_INTEGER(M) =select
E <= '1' when "0001", B o= '17% whem 1]213]5]7 1113,
'1' when "0010", '0' when others;
'1' when "O00L1° | "01017° | "0111", end prime5_acch;

'1' when "1011" | "1101",
0! when others;
end primed_azch;

5. VHDL

- Behavioural Design (1) -

= The main behavioural construct is the process which is a collection of
sequential statements that executes in parallel with other concurrent
statements and processes.

= A process simulates in zero time.

= A VHDL process is a concurrent statement, with the syntax:

process (signalntame , signal-name, signal-note)
type declarations
variable declarations
constant declarations
Junction definttions
procedure defnitions
begin
sequential-statement

sequential-statement
and process;

5. VHDL

- Behavioural Design (2) -

A process can not declare signals, only variables, which are used to keep
track of the process state.

The syntax for defining a variable is:
variable variable-names : variable-type;

A VHDL process is either running or suspended.

The list of signals in the process definition (sensitivity list) determines when
the process runs.

A process is initially suspended. When a sensitivity list's signal changes value,

the process resumes, starting at the 1st statement until the end.

If any signal in the sensitivity list change value as a result of running the
process, it runs again.

5. VHDL

- Behavioural Design (3) -

This continues until the process runs without any of these signals changing
value.

In simulation, this happens in zero simulation time.

Upon resumption, a properly written process will suspend after a couple of
runs.

It is possible to write an incorrect process that never suspends.

Consider a process with just one sequential statement “x <= not x;”and a
sensitivity list of “ (x)”.

Since X changes on every pass, the process will run forever in zero simulated
time.

In practice, simulators can detect such behaviour, to end the simulation.

5. VHDL

- Behavioural Design (4) -

= The sequential signal assignment statement has the same syntax as the
concurrent version (but it occurs within the body of a process):
signal-name <= expression;

= The variable assignment statement has the following syntax:
variable-name := expression;

architecture prime6_arch of primef is
bagin
process (N
wariable W3L_NO, NW3L_WZL_WN1, WZL_Wl_NO, NZ_MW1L_NO: STD_LOGIC;

begin
M3L_NO := mot M(3) and W(0);
M3IL_MZL_M1 := not M(3] and not M(2] and wil) H
N2L_ Ml w0 = not W(2) and Wil) and W(0);
NZ_W1L WO = Wi2) and net Wil) and W10);

F <= M3L_NO or M3L_N2L N1 or W2L_N1_MO0 or N2_WLL_WO;
end process;
end primeé_arch;

5. VHDL

- Behavioural Design (5) -

= Other sequential statements include popular constructs, such as i f,
case, loop, for, and while.

if Boolean-expression then seguential-statement cazse eAprESSioN iz
end if; when cholres = sequential-statements

if Boolean-expression then sequentiaf-statement whan choices => sequential-statements

al=e sequential-starement end caze;

end if;

if boolean-expression then sequential-statement Leop i for identifier in range loop
el=if boole APRSSIOR then seg I- EL Ei

al=ifbaot xpression t hen sequential quential. g 14

and if; end Laop; end loop;

i f Boofean-expression then sequentif
elsifboolean-expression then sequential-statenent while boofean-expwssion Loop

sequential-staternent

alsif baolaan-exprssion + hen sequential-statemant
else sequentia{-stannent Sequential-staterme Rt
and if; end loop;

5. VHDL

- Behavioural Design (6) -

acchitecture prime7_arch of prime is

end prime?_arch;

architscturs prime8_arch of prime is

begin begin

process (M) process (M)
wariable NI: INTEGER; begin

begin case CONV_INTEGER (M) i=
NI := COWV_INTEGER M), when 1 =» P <=
if WI=l or WI=2 then F <= '1'; when 2 =» P <=
elsif NI=3 or MI=5 or MI=7 or MI=11 or when 3 | 5 | 71 11 | 13 =» F <= '1*;

WI=13 then B <= '1*; when others => B <= '0';

else F <= '0'; end case;
end if; and process;

end procass; end prime8_arch;

5. VHDL

- Behavioural Design (7) -

architecture prime9_arch of primed is
begin
process ()
variable WI: INTEGER;
variable prime: boolean;
begin
MI = CONV_INTEGER (N);
prime := true;
if MI=l or WI=2 then null; -- boundary cases
alse for i in 2 to 253 loop
if WI mod i = O then
prime := falme; exit;
end if;
end Loop;
and if;
if prime then F <= 'L%; else F <= *0°'; end if;
end process;
end prims9_arch;

5. VHDL

- Time Dimension (1) -

None of the previous examples deals with the time dimension of the
circuit operation: everything happens in zero simulated time.

VHDL has excellent facilities for modelling the time.

VHDL allows a time delay to be specified by using the keyword after in
any signal-assignment statement.

Z <= ‘1’ after 4ns when X=‘1’ else
‘0’ after 3ns;

This models a gate that has 4ns of delay on a 0-to-1 output transition and
only 3ns on a 1-to-0 transition.

With these values, a VHDL simulator can predict the approximate timing
behaviour of a circuit.

5. VHDL
- Time Dimension (2) -
Another way to invoke the time dimension is with wait.
This sequential statement can be used to suspend a process for a
specified time period.
A wait statement can be used to create simulated input waveforms to
test the operation of a circuit.

entity InhibitTestBench is
end InhibitTestBench;

architecture InhibitTB_arch of InhibitTestBench is
component Inhibit port (X,¥: in BIT; Z: out BIT); end component;
signal XT, YT, 2T: BIT;
begin
Ul: Inhibit port map (XT, YT, ZT);
process
begin
KT <= '0"; YT <= '0';
wait for 10 ns;
XT <= '0'; YT <= '17;
wait for 10 ns;
XT <= '1'; YT <= '0%;
wait for 10 ns;
XT <= '1'; YT <= '17;
wait; —- this suspends the process indefinitely
end process;
end InhibitTB_arch;

5. VHDL

- Simulation (1) -

Once we have a VHDL program whose syntax and semantics are correct,
a simulator can be used to observe its operation.

Simulator operation begin at simulation time of zero.

At this time, the simulator initialises all signals to a default value.

It also initialises any signals and variables for which initial values have
been explicitly declared.

Next, the simulator begins the execution of all processes (and concurrent
statements) in the design.

The simulator uses a time-based event list and a signal-sensitivity matrix
to simulate the execution of all the processes.

5. VHDL

- Simulation (2) -

At simulation time zero, all processes are scheduled for execution.

One of them is selected and all of its sequential statements are executed,
including any looping behaviour that is specified.

When the execution of this process is completed, another one is selected,
and so on, until all processes have been executed.

This completes one simulation cycle.
During its execution, a process may assign new values to signals.

The new values are not assigned immediately. They are placed on the
event list and scheduled to become effective at a certain time.

5. VHDL

- Simulation (3) -

If the assignment has an explicit simulation time (a fter clause), then it
is scheduled on the event list to occur at that time.

Otherwise, it is supposed to occur “immediately”.

Itis actually scheduled to occur at the current simulation time plus one
delta delay.

The delta delay is an infinitesimally short time, such that the current
simulation time plus any number of delta delays still equals the current
simulation time.

The delta delay concept allows processes to execute multiple times (if
necessary) in zero simulated time.

After a simulation cycle completes, the event list is scanned for the
signals that change at the next earliest time on the list.

5. VHDL

- Simulation (4) -

This may be as little as one delta delay, or it may be a real delay, in which
case the simulation time is advanced.

In any case, the scheduled signal changes are made.
Some processes may be sensitive to the changing signals.

All the processes that are sensitive to a signal that just changed are
scheduled for execution in the next simulation cycle.

The simulator’s operation goes on indefinitely until the list is empty.

The event list mechanism makes it possible to simulate the operation of
concurrent processes in a uni-processor system.

The delta delay mechanism ensures correct operation even though a set
of processes may require multiple executions.

5. VHDL

- Simulation (5) -

library IEEE;
use IEEE.std_logic_1164.all;

entity testAlulbit is
end entity test_alulbit;

architecture tst of testAlulbit is

component alulbit is
port (
a, b, ¢ : in std logic;
sel : in std_logic_vector (1
downto 0);
res, £ : out std_logic);
end component alulbit;

signal il : std logic := '0';
signal i2 : std_logic := '0
signal ci : std_logic := '0';
signal op : std logic_vector
(1 downto 0) := "00";
signal res : std_logic;
signal co : std_logic;

begin
-- instanciar o sistema

-- a testar
ALUL: alulbit
port map (
a = il ,
b = i2 ,
c = ci ,
sel => op ,
res => res ,
£ = co);

process (il) is
begin
if il='1" then
il <= '0' after 10nms;
elsif il='0' then
il <= '1' after 10ns;
end if;
end process;

process (i2) i
begin
if i2='1" then
i2 <= '0' after 20ns;
elsif i2='0' then
i2 <= '1' after 20ns;
end if;
end process;

process (ci) is
begin

if ci='1' then
after 40ns;
elsif ci='0' then

ci <= 'l' after 40ns;
end if;

ci <=

end process;

process (op) is
begin
if op="00" then
op <= "01" after 80nms;
elsif op="01" then
op <= "10" after 80nms;
elsif op="10" then
op <= "11" after 80nms;
elsif op="11" then
op <= "00" after 80ns;
end if;
end process;

end architecture;

5. VHDL

- Synthesis (1) -

VHDL was originally conceived as a description and simulation language.
It was later adopted also for synthesis purposes.

The language has many features and constructs that can NOT be
synthesized.

The subset of the language and the style of the programs presented so
far are generally synthesizable by most commercial tools.

The code that is written can have a major impact on the quality of the
synthesized circuits.

Serial control structures, like if-elsif-elsif-else can resultin
a corresponding serial chains of logic gates to test conditions.

Itis better to use a case or select statement if the conditions are
mutually exclusive.

5. VHDL

- Synthesis (2) -

= Loops in processes are usually unwound to create multiple copies of
combinational logic to execute the statements in the loop.

= If one wants just one copy of the combinational logic to execute the
statements in the loop, then a sequential circuit must be designed.

= When using conditional statements in a process, failing to include all the
input combinations will cause the compiler to introduce a latch to hold the old
value that might otherwise change.

= Such latches are typically not intended.

= Finally, some language features and constructs are simply unsynthesizable,
depending on the tool being used.

= Typical examples include dynamic memory, files, and pointers.

