Sistemas Digitais I
LESI - 20 ano

Unit 5 - VHDL

Joao Miguel Fernandes
www.di.uminho.pt/~jmf

DEP. DE INFORMATICA
N\ N\
\ !/ 72O EscoLA DE ENGENHARIA
UNIVERSIDADE DO MINHO

5. VHDL

- Summary -

Design flow
Entities and Architectures

= Types

Functions and Procedures
Libraries and Packages
Structural Design
Dataflow Design
Behavioural Design

= Time Dimension
= Simulation

5. VHDL

- Introduction -

VHDL was developed, in the mid-1980s, by DoD and IEEE.

VHDL stands for VHSIC Hardware Description Language;
VHSIC stands for Very High Speed Integrated Circuit.

VHDL has the following features:
- Designs may be decomposed hierarchically.
- Each design element has both an interface and a behavioural specification.

- Behavioural specifications can use either an algorithm or a structure to define
the element's operation.

- Concurrency, timing, and clocking can all be modelled.
- The logical operation and timing behaviour of a design can be simulated.

5. VHDL

- Design flow -

« VHDL started out as a documentation and modelling language, allowing the

behaviour of designs to be specified and simulated.

= Synthesis tools are also commercially available. A synthesis tool can create

logic-circuit structures directly from VHDL specifications.

front-end
steps

back-end
steps

{

l hierarchyf codin
I block diagram | & g

i {very painfull)

l | compilation | simulation/
o P | wverification
(paintul, but not uncommaon; -
svrthesis fitting/ - timing
4 place+route verification

Y

5. VHDL

- Entities and Architectures (1) -

VHDL was designed with the principles of structured programming.
Pascal and Ada influenced the design of VHDL.

An interface defines the boundaries of a hardware module, while hiding its
Internal details.

A VHDL entity is a declaration of a
module’s inputs and outputs.

A VHDL architecture is a detailed
description of the module’s internal

structure or behaviour.

i
/en Ty

5. VHDL

- Entities and Architectures (2) -

An architecture may use other
entities.

A high-level architecture may
use a lower-level entity
multiple times.

Multiple top-level
architectures may use the
same lower-level entity.

This forms the basis for
hierarchical system design.

»
entity B /enﬁy C

entity A

architecture A
I
|

’

i

|/

d

architecture B

architecture C

P’ *I

architecture D

- 2 2

/ \ L~ VA4
entity E %//

architecture E

architecture F

5. VHDL

- Entities and Architectures (3) -

= In the text file of a VHDL program, the entity declaration
and the architecture definition are separated.

text file (e.g., mydesign.vhd)

entity Inhibit i=x
port [(X,¥: in BIT;

‘ entity declaration
i cut BIT);

end Inhibit;

begin
% <= '"l' when X='l"' and ¥='0"' el=a '0°*;
end Inhibit arch;

architecture definition

I
I

I

I

I

I

I

I

. 1
architecture Inhikit_arch of Inhibit 1= 1
I

I

I

I

I

I

I

I

« The language is not case sensitive. ~ fTTTTTTTTTmmmoees
= Comments begin with 2 hyphens (--) and finish at the end of the line.

= VHDL defines many reserved words (port, is, in, out, begin, end,
entity, architecture, 1£f, case,)

5. VHDL

- Entities and Architectures (4) -

= Syntax of an entity declaration:

entity ertity-rate 1=
port [stenal-rames © mode sieral-type ;
stgnal-names © mode sigral-type ;

stgral-rames © mode sighal-type) ;
end ertity-rame ;

= mode specifies the signal direction:
- in:input to the entity
- out: output of the entity

- buffer: output of the entity (value can be read inside the architecture)
- inout: input and output of the entity.

= signal-type is a built-in or user-defined signal type.

5. VHDL

- Entities and Architectures (5) -

Syntax of an architecture definition:

architecture architecture-rame of entity-nome ix
type declarations
stenal declarations
corstant declarattons
Turecnon definttions
procedure definitions
component declarattons
bagin
CORCUF R R -Statement

CORCUF R E-Stafement
and Architectine -Rake ;

The declarations can appear in any order.

In signal declarations, internal signals to the architecture are defined:
signal signal-names : signal-type;

5. VHDL

- Types (1) -

= All signals, variables, and constants must have an associated type.

A type specifies the set of valid values for the object and also the operators
that can be applied it = ADT (similar concept to OO class).

= VHDL is a strongly typed language.
= VHDL has the following pre-defined types:

bit character zavarity lewvel
bit wector integer =tring
boolean real t1me

integer includes the range -2 147 483 647 through +2 147 483 647.
boolean has two values, true and false.
character Includes the characters in the ISO 8-bit character set.

5. VHDL

- Types (2) -

« Built-in operators for integer and boolean types.

integer Operalors

boaolean Qpermlors

mod
rem

ab=
*

addition
subtraction
muliiplication
division

modulo division
modulo rermaindetr
absolute valoe
exponentlation

and AND
or OR
nand MNAND
nor MNOR

wor Excluswve OR
xnor Excluswe NOR
not complementation

5. VHDL

- Types (3) -

« User-defined types are common in VHDL programs.
« Enumerated types are defined by listing the allowed values.

t ype type-rare ix (valve-fist) ; type STD_ULOGIC i= |

=ubt ype subtype -name ix type-name start to end; :U: A Um:nj_‘tj‘ﬂlu'i'd

=ubt ype subtype -name Lx type-Kame start downto emd; _H R Forcing Unknawn
a', —-- Forcing 0O

const ant CoRIART-RaKRe @ type -Hname = valve; '1*, —-—- Forcing 1
'%', —— High Impedance
'm*', —— Weak Unkneown
'L', —— Weak 0
'H', —— Weak 1

'—rl; —— Den't care
subt ype STD_LOGIC 1= re=soclved STD_ULOGIC;

= type traffic_light 1s (reset, stop, start, go);
= subtype bitnum 1s integer range 31 downto 0;
= constant BUS_SIZE: 1nteger := 32;

5. VHDL

- Types (4) -

= Array types are also user-defined.

type type-HoHe 1ix array(start to end) of element-type;

type type-HoMie 1x array(start downto end) of element-type;

type type-HaKHie 1= arrvay(kakge-typel of element-type ;

type type-HaHie 1x array |FAHge-type range start to end) of element-type;

t ype type-Hokte 1= array(range-type range start downto end) of ¢ lenent-type;

type monthly_count 1= array (1 te 12) of integer;
type byte 1= array (7 downteo 0) of S3TD _LOGIC;

conztant WIRD_LEM: integer = 32;
type word 1= array [(WORD_LEM-1 dewnto 0) of STD_LOGIC;

conztant MUM_REGS: integer = &;
type reg_file 1= array (1 to MNUM_REGZ] of word;

type =tatecount i= array (traffic_light_ _=tate] of integer;

5. VHDL

- Types (5) -
Array literals can be specified by listing the values in parentheses:
Xyz = (IlI,Ill,IOI,I]_I,I]_I,IOI,IOI,I]_I);
abc := (0=>'0", 3=>'0", 9=>'0'", others=>"1");
Strings can be used for STD_LOGIC arrays:
xyz := "11011001";
abc := ”0110111110111111";

Array slices can be specified:

Xyz (2 to 4) abc (9 downto 0)

Arrays and array elements can be combined with the concatenation
operator (s):

707&’ 176”12 ISequivalentto 7o11z”.

B(6 downto 0)&B(7) representsa 1-bit left rotate of the B array.

5. VHDL

- Functions and Procedures (1) -

= A function accepts a set of arguments and returns a resullt.
= The arguments and the result must have a type.

« Syntax of a function definition.

funct ion fiction -rname |
stgral-names : signal-type;
stgnal-names © senal-type;

stgnal-names © senal-type

] return refurn-type 1=

type declarations

corstant declarattons

variable declarations

Jerection definittons

procedure defintttons
begin

seqgueral-state e it

sequental-state et
end Function -Rame ;

architecture Inhikit _archf of Inhikit 1=

function But®et (A, B: bkit) return bit 1=

begin
if B = '"0'" then return &;
gl=e return '0°;
end 1f;

end ButWot;

begin

Z €= ButMot (X, Y);
end Inhikit_archf;
|

functien CONV_INTEGER (X: STD_LOJGIC_VECTOR) return INTEGER 1=

5 VH DL wvariakle RESULT: INTEGER;
[kegin

i RESULT := 0O;
- Functlons and for 1 in X'range loop
RESULT := RE3ULT * 2;
Procedures (2) - case X(i] is
when '0" | 'L" =2 null;
when '1" | 'H' = REZSULT := RE3ULT + 1;
when others= =» ntuall;

end caxza;

« |tis often necessary to end Loop;

return RESULT;

convert a signal from one ana conv_mrecex;

type to another.

« Assume that the following
. . function CONV_STD_LOGIC_VECTOR (ARG: INTEGER; SIZE: INTEGER)
unconstrained array tvpe IS return STD_LOGIC_VECTOR is

d f- d_ variable result: STD_LOGIC VECTOR (SIZE-1 downto Q) ;
e Ine . variable temp: integer;

begin
type temp = ARG;
STD _LOGIC_VECTOR 1is for i in 0 to SIZE-1 loop
T _ if (temp mod 2Z2) = 1 then result(i) := '1";
array (natural range else result (1) := '0';
<>) of STD_LOGIC; end if;
temp := temp / 2;
end loop;

return result;
end;

5. VHDL

- Functions and Procedures (3) -

= A procedure is similar to a function, but it does not return a result.

= Whereas a function call can be used in the place of an expression, a
procedure call can be used in the place of a statement.

= Procedures allow their arguments to be specified with mode out or inout,
so it is possible for a procedure to “return” a result.

5. VHDL

- Libraries and Packages (1) -

A library is a place where the VHDL compiler stores information about a
particular design project.

For any design, the compiler creates and uses the work library.
A design may have multiple files, each containing different units.

= When a file is compiled, the results are placed in the work library.

Not all information needed in a design must be in the work library. A
designer may rely on common definitions or functions across a family of
different projects.

A project can refer libraries containing shared definitions:

library 1leee;

5. VHDL

- Libraries and Packages (2) -

Specifying a library gives access to any previously
analysed entities and architectures, but does not
give access to types and the like.

A package is a file with definitions of objects
(signals, types, constants, functions, procedures, component

declarations) t0 be used by other programs.

A design can use a package:
use leee.std_logic_1164.all;

Within the ieee library, the definitions are on file
std_logic_1164.

package packape-narie 1=
type declarattons
stpral declarations
constant declarattons
ot poe it declarations
Turcton declarations
procedure declarations
end packapge-rnane ;
package body pockage-rare Lx
type declarattons
constant declarattons
Juereton defiritions
procedure definttions
end packape-Rame ;

5. VHDL

- Structural Design (1) -

The body of an architecture is a series of concurrent statements.

Each concurrent statement executes simultaneously with the other
concurrent statements in the same architecture body.

Concurrent statements are necessary to simulate the behaviour of
hardware.

The most basic concurrent statement is the component statement.

abel: component-nane port map (sigrall, stgral?, ... seralr) ;

fabel: component-rame port map (portl=>sigrall, portZ=rsipral?, ..., porth=rsigratn) ;

component —name IS the name of a previously defined entity.
One instance of the entity is created for each component statement.

5. VHDL

- Structural Design (2) -

= Before being instantiated, a component must be declared in the
component declaration In the architecture’s definition.

= A component declaration is essentially the same as the port declaration
part of an entity declaration.

componsnt CoMpPonen -Rame
port (steral-nanes © mode signal-type ;
stgral-rares mode sigral-type ;
stgnal-nares © mode sigral-type) ;
and component;

= The components used in an architecture may be those previously defined
as part of a design, or they may be part of a library.

5. VHDL

- Structural Design (3) -

library IEEE;
uxze IEEE.=td leogic_l1léd.all;
antity prime i=x

port

{ W: in STD_LOGIC VECTOR (3 downto 0); F: out STD_LOGIC) ;
end prime;

architecture primel_arch ot prime 1=
=ignal M3_L, W _L, Wl_L: STD_LOGIC;
=ignal W3L WO, W3L_M2L_M1, N2L_W1l_W0, W2_M1L_W0: STD_LOGIC;

componaent
conmpoensnt
conponent
conmpoensnt
kbegin
Ul: INV
UZ: INW
U3 INW

INV port (I: in STD_LAOGIC; QO: ocwvut STD_LOGIC); end component;

AMDY port (I0,Il: in 3TD_LOGIC; J: out STD_LIGIC); end component;
AND: peort (I0,I1,I¢: in STD_LOGIC; O: owt STO_LOGIC); end compeonent;
JR4 port (I0,I1,T%,I3: 1n STO_LOGIC; Q:ocwut STD _LAGIC) ;end compeonent;

port map (W3], M3_L);
port map (WiZ2), WZ_Lj;
pert map (W(l), W1_L);

U4: AWD? peort map [(M3_L, Wil), M3IL_WNO);

U5: AND3 port map (M3_L, WZ_L, WNil), WM3L_MWZL_mWl);
U6: AND3 port map [(WZ_L, Wil), Wi0), WZL_W1_m0);
U7: AMDZ port map (Mi¢), W1_L, Wi0), W_WN1IL_MWO);

ug: orR4

port map (M3L M0, ®W3L_W2L_Wl, WZL_M1_N0, W2_MNlL W0, E);

end primel_arch;

5. VHDL

- Structural Design (4) -

= An architecture that uses components is a structural description, since it
describes the structure of signals and entities that realise the entity.

« The generate statement allows repetitive structures to be created.

fabel: for Iideml'_ﬁer in raKge generate
CORCU R BE-state et
and generate;

likbrarcy IEEE;
u=e IEEE.=td_legic_11lé64d4.all;
entity invd 1=
port [X: in STD_LOGIC VECTOR (1 to &)
Y: ownt STD_LOGIC _WECTOR (1 te 3) 1;
end inwvd;
architecture inwd_arch of invd ix
component INV port (I: in STD_LOGIC; J:eowut 3TD_LAGIC) ; end component ;
begin
gl: fer b 1n 1l to 3 generate
Ul: INV port map (X(b), Yik]];
and generate;
end inwvd__arch;

5. VHDL

- Structural Design (5) -

= Generic constants can be defined in an entity declaration.

antity entiy-nome is
generic [CoXSIaRt-Raes ¢ CoRstant-type ;
CORSTARt-RAames ¢ constant-type ;

CORSIART-RAMES 1 CORSTARt-type] ;
port (Sighal-rames © mode signal-type ;
stgnal-rames © mode stpnal-type ;

signal-rames © mode signal-type) ;
enid entiy-RARe ;

= Each constant can be used within the respective architecture and the value
Is deferred until the entity is instantiated in another architecture, using a

component statement.

= Within the component statement, values are assigned to the generic

constants using a generic map clause.

5. VHDL

- Structural Design (6) -

library IEEE;
u=e IEEE.=td_leogic_l1léd4.all;

entity businv 1=
generic [WIDTH: po=sitiwve];
port [X: in STD_LOGIC VECTOR (WIDTH-1 downteo 0);
Y: out STD_LOGIC VECTOR [(WIDTH-1 downto 0)) ;
end bu=zinw;

architecture buzinv_arch of buzinv 1=
compenent INYV pert (I: in 2TD_LOGIC; J: out 2TD_LOGIC); end compeonent;
begin
gl: foer b 1n WID-1 downto 0 generate
Ul: INV port map (X(k), Yib));
and generate;

end bu=zinv_arch;
. ___|

5. VHDL

- Structural Design (7) -

likbrarcy IEEE;
u=e IEEE.=td_leogic_lléd.all;

entity bu=zinv_example i=
port [IME: in STD_LOGIC_WECTOR (7 downto 0);

QUTE: et 3TD_LOGIC VECTOR (7 downte 05
IMlé: in STD LOGIC VECTOR (15 downte 0);
QUT1E: out STD_LOGIC VECTOR (15 downto 0);
IM3Z2: in STD_LOGIC_VECTOR (21 downto 0);
QUT32: out STD_LOGIC VECTOR (31 dewnto 0] J;

end buEinv_example;

architecture bu=sinwv_ex_arch of bu=minv_example i=
compeonent bu=sinw

generic (WIDTH: mo=itiwve];

pert [X: in STD_LOGIC_WECTOR (WIDTH-1 dowateo 0);

Y: out STD_LOGIC_WVECTOR [(WIDTH-1 dowate 0);

end compeonent;
begin
Ul: businv generic map (WIDTH=:5) port map (IWE, OUTE);
UZ: businv generic map (WIDTH=:1&) port map (INlé&é, OUTlé);
U3: bu=inv generic map [(WIDTH=:r3%) port map [(IN3Z, QUT3Z);
end bu=inv_ex_arch;

5. VHDL

- Dataflow Design (1) -

= QOther concurrent statements allow circuits to be described in terms of
the flow of data and operations on it within the circuit.

This gives origin to the dataflow description style.
= Syntax of concurrent signal assignments statements.

stpnal-rane <= eXpresston;

stgral-name <= expresston when boolean-expression elze
expression when booleak-expression el=e

expresston when boolear-expresston el=e
EXPrESSEON ;

5. VHDL

- Dataflow Design (2) -

architecture prime?_arch of prime i=
=ignal M3L MO, W3AL_W2L_MWl, W2L_M1_M0, W2_WlL_NW0: STD_LOGIC;

begin
MAL_mMO0 <= not WI(3) and W) ;
MEL_MNZL_MW]l <= net W(3) and net WiZ)] and Mil) ;
MZL_mW1_ w0 €= net ®WiZ] and W(l) and W) ;
MZ _WNIL WO == Mi2)] and not W(l) and W(0);

F <= N3L_M0 or W3L_MW2L_Wl or W2ZL_M1 W0 or WZ_MWIL_MW0;

aend primed_arch;

architecture prime? arch of prime i=

=ignal W3L W0, WM3L_W2L_MN1, W2L_NW1_W0, W2_NW1L_W0: STD_LOGIC;

kbegin
M3L_mO <= '"1"'" when Wi3)="0" and W(0]="1l" el=e '0O";
W3L_MWZL_MN1l <= 'l"' when Wi3)="0" and WN(2)="0" and Wili="1" el=e '0O';
WAL W1 WO <= "1"' when W(2)="'0" and N(l)="1" and Wi0)j="1l" el==s '0';
We_MIL WO <= "1"' when Wi2)l="'1l" and WN(l)="0" and Wi0i="1l" el=e '"0';
B <= M3IL_ M0 or M3L_MNZL_ Ml or MZL_MN1 NO or NZ_MN1L_NO;

aend primel arch;

5. VHDL

- Dataflow Design (3) -

= Another concurrent statement is the selected signal assignment, which
is similar to a typical CASE constructor.

= Syntax of selected signal assignments.

with expression =elect
stgral-name <= sighal-valve when chotres,
stgnal-valve when chotces,

stgral-valve when chotees;

architecture primed _arch of prime i= architecture prime5 arch of prime 1=
begin kegin
with M =elect with CONV_INTEGER(MN) =elect
EF <= 'l" when "000L1", F <= 'l" when 123|517 |11]13,
'1"' when "Q0010%, '0"' when others;
'1" when "0O011"™ | "™O0l01" | "O0111", and prime5 arch;

'1* when "1011"™ | "1101",]
'0" when others;
end primed arch;

5. VHDL

- Behavioural Design (1) -

The main behavioural construct is the process which is a collection of
sequential statements that executes in parallel with other concurrent
statements and processes.

A process simulates in zero time.
A VHDL process is a concurrent statement, with the syntax:

process [stgral-rame, sigral-name, . ., sigral-name)
type declarations
vartable declarattons
constant declarations
Turcton definttions
procedure defintttons .
begin
sequernttal-state et

sequernttal-state et
and proce==;

5. VHDL

- Behavioural Design (2) -

A process can not declare signals, only variables, which are used to keep
track of the process state.

The syntax for defining a variable is:
variable variable—-names : variable-type;

A VHDL process Is either running or suspended.

The list of signals in the process definition (sensitivity list) determines when
the process runs.

A process Is initially suspended. When a sensitivity list's signal changes value,
the process resumes, starting at the 1st statement until the end.

If any signal in the sensitivity list change value as a result of running the
process, it runs again.

5. VHDL

- Behavioural Design (3) -

This continues until the process runs without any of these signals changing
value.

In simulation, this happens in zero simulation time.

Upon resumption, a properly written process will suspend after a couple of
runs.

It is possible to write an incorrect process that never suspends.

Consider a process with just one sequential statement “x <= not x;"anda
sensitivity list of “ (x)”.

Since X changes on every pass, the process will run forever in zero simulated
time.

In practice, simulators can detect such behaviour, to end the simulation.

5. VHDL

- Behavioural Design (4) -

= The sequential signal assignment statement has the same syntax as the

concurrent version (but it occurs within the body of a process):
signal—name <= expression;

= The variable assignment statement has the following syntax:

variable—name := expression;

architecture primeé _arch of primeé 1=
begin
proce== (M)
wariable W3L_M0, W3L_WZL W1, WZL_MN1 N0, W2 W1L_W0: STD_LOGIC;

begin
MAL_M0 = ot W3] and W (0);
MEL_ WAL Ml = not W(3] and neot WI(Z)] and Mil) ;
MZL_MW1l_ M0 = not W(2) and Wil and W(0);
MZ_WlL_m0 = Wi2) and aot W(l) and Wi0);

B <= N3L N0 or M2L MNZL_Nl or NZL_Nl W0 or M2 NIL MNO;
end process;

and primeé _arch;

5. VHDL

- Behavioural Design (5) -

« Other sequential statements include popular constructs, such as i f,

case, loop, for, and while.

i1t booleakr-expression then sequentiafl-staterent
end i1f;

i1t booleakr-expression then sequentiafl-staterent

alxe seguertidl-statement
end L1f;

if Boolear-expresston +hen sequential-stateprent
elxif boolear-expression then segquential-staterment

2 l=if boolean <xpresston then seguenttal-statement
end i1f;

if boolear-expresston then sequentiafl-staternent
el=xif boolear-expression then segquential-staterment

al=if boolearn-expression then sequential-staterment
el xe sequentil-staterent
end L1f;

caxze SAPPESSION 1x
when chotes => sequential-staterments

when chotes => sequential-staterents
end caxzes;

loop for tdenttfier in rarge loop
sequentta -state ment seguien al-state et

seqgue rntial-state e it
aend loop;

sequerttal-statement
end loop;

while bBocfearn-expression Lloop
sequenttal-stateme st

sequenttal-stateme st
and loop;

5. VHDL

- Behavioural Design (6) -

architecture prime?_arch of prime i=

architecture primef_arch of prime 1=
begin

begin
proce=z (M)

wariable MI: IWTEGER;

begin
MI = COWV_INTEGER (M) ;
1f NI=]l or WI=¢ then B «<= '1"';
gl=if WMI=3 or WI=5 or WMI=T7 or WI=1ll or

WI=1l2 then B <= '1°';

gelze B <= '0';
end i1f;

end process;

and prime’_arch;

proce== M)
begin
caxze COWV_INTEGERI[M] 1=
when 1 = F <= '1"';
when 2 = P <= '"1°';
when 2 | 5 | 7 | 11 | 13 =» B == '1"';
when other= == P <=
end caze;
and processE;
end primed_arch;

5. VHDL

- Behavioural Design (/) -

architecture prime% arch of prime? 1=
begin

proce== M)

wariable MI: IWMTEGER;

wariable prime: boolean;

begin
MI = COWNV_INTEGER (M) ;
prime = true;
if WI=]l or WI=Z then tull; -- boundary caxzesxs

alzse for 1 1in 2 to 253 loop

1f WI mod 1+ = 0 then

prime := fal=e; exit;
end i1f;
end loop;
end i1f;
1f prime then F <= 'l'; el=ze F <= '0'; end 1f;
and proce=sx;
end primef_arch;

5. VHDL

- Time Dimension (1) -

= None of the previous examples deals with the time dimension of the
circuit operation: everything happens in zero simulated time.

= VHDL has excellent facilities for modelling the time.

« VHDL allows a time delay to be specified by using the keyword after in

any signal-assignment statement.

Z <= ‘1" after 4ns when X='1’" else
‘0" after 3ns;

= This models a gate that has 4ns of delay on a 0-to-1 output transition and
only 3ns on a 1-to-0 transition.

= With these values, a VHDL simulator can predict the approximate timing
behaviour of a circuit.

5. VHDL

- Time Dimension (2) -
Another way to invoke the time dimension is with wait.

This sequential statement can be used to suspend a process for a
specified time period.

A wait statement can be used to create simulated input waveforms to
test the operation of a circuit.

entity InhikitTestBench is
end InhibitTestBench ;

architecture InhibitTB _arch of InhibitTestBench is
component Inhibit pert (¥,¥Y: in BIT; Z: out BIT); end component;
signal XT, ¥T, ZT: BIT;
begin
Ul: Inhibit port map (¥XT, ¥T, E&T);
process
begin
XT <= "0'; YT <= "0";
wait for 10 ns;
KT <= "0'; YT <= "1°';
wait for 10 ns;
XT <= "1"; YT <= '0";
wait for 10 ns;
KT <= "1"; YT <= "1";
wait; —— this suspends the process indefinitely
end process;
end InhikitTB_arch;

5. VHDL

- Simulation (1) -

Once we have a VHDL program whose syntax and semantics are correct,
a simulator can be used to observe its operation.

Simulator operation begin at simulation time of zero.
At this time, the simulator initialises all signals to a default value.

It also initialises any signals and variables for which initial values have
been explicitly declared.

Next, the simulator begins the execution of all processes (and concurrent
statements) in the design.

The simulator uses a time-based event list and a signal-sensitivity matrix
to simulate the execution of all the processes.

5. VHDL

- Simulation (2) -

At simulation time zero, all processes are scheduled for execution.

One of them is selected and all of its sequential statements are executed,
including any looping behaviour that is specified.

When the execution of this process is completed, another one is selected,
and so on, until all processes have been executed.

This completes one simulation cycle.
During its execution, a process may assign new values to signals.

The new values are not assigned immediately. They are placed on the
event list and scheduled to become effective at a certain time.

5. VHDL

- Simulation (3) -

If the assignment has an explicit simulation time (a £t er clause), then it
Is scheduled on the event list to occur at that time.

Otherwise, it is supposed to occur “immediately”.

It is actually scheduled to occur at the current simulation time plus one
delta delay.

The delta delay is an infinitesimally short time, such that the current
simulation time plus any number of delta delays still equals the current
simulation time.

The delta delay concept allows processes to execute multiple times (if
necessary) in zero simulated time.

After a simulation cycle completes, the event list is scanned for the
signals that change at the next earliest time on the list.

5. VHDL

- Simulation (4) -

This may be as little as one delta delay, or it may be a real delay, in which
case the simulation time is advanced.

In any case, the scheduled signal changes are made.
Some processes may be sensitive to the changing signals.

All the processes that are sensitive to a signal that just changed are
scheduled for execution in the next simulation cycle.

The simulator’s operation goes on indefinitely until the list is empty.

The event list mechanism makes it possible to simulate the operation of
concurrent processes in a uni-processor system.

The delta delay mechanism ensures correct operation even though a set
of processes may require multiple executions.

5. VHDL

- Simulation (5) -

library IEEE;
use IEEE.std logic_1164.all;

entity testAlulbit is
end entity test_alulbit;

architecture tst of testAlulbit is

component alulbit is

port (

a, b, ¢ : in std _logic;

sel : in std_logic_vector (1
downto 0);

res, f : out std_logic);

end component alulbit;

signal il std logic := '0';

signal i2 std logic := '0';

signal ci std _logic := '0';

signal op : std _logic_vector
(1 downto 0) := "00";

signal res : std _logic;
signal co std_logic;

begin
—— instanciar o sistema
—— a testar
ALUl: alulbit

port map (
a = il ,
b = i2 ,
c => ci ,
sel => op ,
res => res ,
£ => co);

process (il) is
begin
if i1='1' then
il <= '0' after 10ns;
elsif il='0' then
il <= '1l' after 10ns;
end if;
end process;

process (i2) i
begin
if i2='1' then
i2 <= '0' after 20ns;
elsif i2='0' then
i2 <= 'l' after 20ns;
end if;
end process;

process (ci) is
begin
if ci='1l' then
ci <= '0' after 40ns;
elsif ci='0' then
ci <= 'l' after 40ns;
end if;

end process;

process (op) is
begin
if op="00" then
op <= "01" after 80ns;
elsif op="01" then
op <= "10" after 80ns;
elsif op="10" then
op <= "11" after 80ns;
elsif op="11" then
op <= "00" after 80ns;
end if;
end process;
end architecture;

5. VHDL

- Synthesis (1) -

VHDL was originally conceived as a description and simulation language.
It was later adopted also for synthesis purposes.

The language has many features and constructs that can NOT be
synthesized.

The subset of the language and the style of the programs presented so
far are generally synthesizable by most commercial tools.

The code that is written can have a major impact on the quality of the
synthesized circuits.

Serial control structures, like if-elsif-elsif—-else canresultin
a corresponding serial chains of logic gates to test conditions.

|t is better to use a case or select statement if the conditions are
mutually exclusive.

5. VHDL

- Synthesis (2) -

Loops in processes are usually unwound to create multiple copies of
combinational logic to execute the statements in the loop.

If one wants just one copy of the combinational logic to execute the
statements in the loop, then a sequential circuit must be designed.

When using conditional statements in a process, failing to include all the
Input combinations will cause the compiler to introduce a latch to hold the old
value that might otherwise change.

Such latches are typically not intended.

Finally, some language features and constructs are simply unsynthesizable,
depending on the tool being used.

Typical examples include dynamic memory, files, and pointers.

