Sistemas Digitais I

LESI - 2º ano

Unit 3 - Boolean Algebra

João Miguel Fernandes

www.di.uminho.pt/~jmf

DEP. DE INFORMÁTICA
ESCOLA DE ENGENHARIA
UNIVERSIDADE DO MINHO

- Summary -

- Binary Signals
- Combinational vs. Sequential Systems
- Gates
- Switching Algebra
- Axioms
- Theorems
- Duality
- Standard Representation
- Examples

- Introduction -

- The success of computer technology is primarily based on simplicity of designing digital circuits and ease of their manufacture.
- Digital circuits are composed of basic processing elements, called gates, and basic memory elements, called flip-flops.
- The simplicity in digital circuit design is due to the fact that input and output signals of each gate or flip-flop can assume only two values, 0 and 1.
- The changes in signal values are governed by laws of Boolean algebra.
- The fact that Boolean algebra is finite and richer in properties than ordinary algebra leads to simple optimisation techniques for functions.
- In order to learn techniques for design of digital circuits, we must understand the properties of Boolean algebra.

- Binary Signals (1) -

- Digital logic hides the analog world by mapping the infinite set of real values into 2 subsets (0 and 1).
- A logic value, 0 or 1, is often called a <u>binary digit</u> (<u>bit</u>).
- With n bits, 2ⁿ different entities are represented.
- When using electronic circuits, digital designers often use the words "LOW" and "HIGH", in place of "0" and "1".
- The assignment of 0 to LOW and 1 to HIGH is called <u>positive logic</u>. The opposite assignment is called <u>negative logic</u>.
- Other technologies can be used to represent bits with physical states.

- Binary Signals (2) -

	State Representing Bit			
Technology	0	1		
Pneumatic logic	Fluid at low pressure	Fluid at high pressure		
Relay logic	Circuit open	Circuit closed		
Complementary metal-oxide semiconductor (CMO5) logic	0-1.5 V	3.5–5.0 V		
Transistor-transistor logic (TTL)	0-0.8 V	2.0-5.0 V		
Fiber optics	Lightoff	Lighton		
Dynamic memory	Capacitor discharged	Capacitor charged		
Nonvolatile, erasable memory	Electrons trapped	Electrons released		
Bipolar read-only memory	Fuse blown	Fuse intact		
Bubble memory	No magnetic bubble	Bubble pæsent		
Magnetic tape or disk	Flux direction "north"	Flux direction "south"		
Polymer memory	Molecule in state A	Molecule in state B		
Read-only compact disc	No pit	Pit		
Rewriteable compact disc	Diye in crystalline state	Dye in noncrystalline state		

- Combinational vs. Sequential Systems -
- A <u>combinational</u> logic system is one whose outputs depend only on its current inputs.
- A combinational system can be described by a <u>truth table</u>.
- The outputs of a <u>sequential</u> logic circuit depend not only on the current inputs but also on the past sequence of inputs ⇒ memory.
- A sequential system can be described by a <u>state table</u>.
- A combinational system may contain any number of logic gates but no feedback loops.
- A <u>feedback loop</u> is a signal path of a circuit that allows the output of a gate to propagate back to the input of that same gate.
- Feedback loops generally create sequential circuit behaviour.

- Gates (1) -

 Three basic gates (AND, OR, NOT) are sufficient to build any combinational digital logic system. They form a <u>complete set</u>.

- The symbols and truth tables for AND and OR may be extended to gates with any number of inputs.
- The <u>bubble</u> on the inverter output denotes "inverting" behaviour.

- Gates (2) -

 Two more logic functions are obtained by combining NOT with an AND or OR function in a single gate.

 The symbols and truth tables for NAND and NOR may also be extended to gates with any number of inputs.

- Switching Algebra -

- In 1854, G. Boole (1815-1865) introduced the formalism that we use for the systematic treatment of logic which is now called <u>Boolean</u> <u>Algebra</u>.
- In 1938, C. Shannon (1916-2001) applied this algebra to prove that the properties of electrical switching circuits can be represented by a 2-valued Boolean Algebra, which is called <u>Switching Algebra</u>.

- Using this algebra, one can formulate propositions that are true or false, combine them to make new propositions and determine if the new propositions are true or false.
- We use a symbolic variable (ex. X) to represent the condition of a logic signal, which is in one of two possible values ("0" or "1").

- Axioms (1) -

- The <u>axioms</u> (or postulates) of a mathematical system are a minimal set of basic definitions that we assume to be true.
- The first axioms embody the digital abstraction: (A1) X=0 if $X\neq 1$ (A1') X=1 if $X\neq 0$
- We stated these axioms as a pair, the only difference being the interchange of the symbols 0 and 1.
- This applies to all the axioms and is the basis of <u>duality</u>.
- The next axioms embody the complement notation:
 (A2) If X=0, then X'=1 (A2') If X=1, then X'=0

We use a prime (') to denote an inverter's function.

- Axioms (2) -

 The last three pairs of axioms state the formal definitions of the AND (logical multiplication) and OR (logical addition) operations:

(A3)
$$0.0 = 0$$

(A4) $1.1 = 1$
(A5) $0.1 = 1.0 = 0$
(A3') $1+1 = 1$
(A4') $0+0 = 0$
(A5') $1+0 = 0+1 = 1$

 By convention, in a logic expression involving both multiplication and addition, multiplication has precedence.

7 = X + Y

- The expression $X \cdot Y + Y \cdot Z'$ is equivalent to $(X \cdot Y) + (Y \cdot Z')$.
- The axioms (A1-A5, A1'-A5') completely define Boolean algebra.

- Theorems (1) -

- <u>Theorems</u> are statements, known to be true, that allow us to manipulate algebraic expressions to have simpler analysis or more efficient synthesis of the corresponding circuits.
- Theorems involving a single variable:

(T1)
$$X+0 = X$$
 (T1') $X\cdot 1 = X$
 (Identities)

 (T2) $X+1 = 1$
 (T2') $X\cdot 0 = 0$
 (Null elements)

 (T3) $X+X = X$
 (Idempotency)

 (T4) $(X')' = X$
 (Involution)

 (T5) $X+X' = 1$
 (T5') $X\cdot X' = 0$
 (Complements)

These theorems can be proved to be true. Let us prove T1:

[X=0] 0+0=0 (true, according to A4') [X=1] 1+0=1 (true, according to A5')

- Theorems (2) -

Theorems involving two or three variables:

- Attention to theorem T8' which is not true for integers and reals.
- T9 and T10 are used in the minimisation of logic functions.

- Theorems (3) -

- Several important theorems are true for an arbitrary number of variables.
- Theorems involving n variables:

theorems

- Theorems (4) -

- DeMorgan's theorem (T13 and T13') for n=2:
 (X·Y)' = X'+Y'
 (X+Y)' = X'·Y'
- DeMorgan's theorem gives a procedure for complementing a logic function.
- DeMorgan's theorem can be used to convert AND/OR expressions to OR/AND expressions.

Augustus De Morgan (1806-1871)

Example:

$$Z = A' B' C + A' B C + A B' C + A B C'$$

 $Z' = (A + B + C') \cdot (A + B' + C') \cdot (A' + B + C') \cdot (A' + B' + C)$

- Theorems (5) -

Equivalent gates according to DeMorgan's theorem

- Theorems (6) -

- Since Boolean algebra has only two elements, we can also show the validity of these theorems by using truth tables.
- To do this, a truth table is built for each side of the equation that appears in the theorem.
- Then both sides of the equation are checked to see if they yield identical results for all the combinations of variable values.
- Let us prove DeMorgan's theorem (T13 and T13') for n=2:

$$(X+Y)' = X'\cdot Y' \qquad (X\cdot Y)' = X'+Y'$$

Χ	Υ	\overline{X}	Y	X + Y	<u>X•Y</u>
0	0	1	1	1	1
0	1	1	0	0	0
1	0	0	1	0	0
1	1	0	0	0	0

Υ	\overline{X}	Y	X•Y	$\overline{X} + \overline{Y}$
0	1	1	1	1
1	1	0	1	1
0	0	1	1	1
1	0	0	0	0
	1	0 1 1 1 0 0	0 1 1 1 1 0 0 0 1	0 1 1 1 1 1 0 1 0 0 1 1

- Duality (1) -

- Theorems were presented in pairs.
- The prime version of a theorem is obtained from the unprimed version by swapping "0" and "1", and "·" and "+".
- Principle of Duality: Any theorem or identity in Boolean algebra remains true if 0 and 1 are swapped and · and + are swapped throughout.
- Duality is important because it doubles the usefulness of everything about Boolean algebra and manipulation of logic functions.
- The <u>dual</u> of a logic expression is the same expression with + and \cdot swapped: $F^D(X_1,X_2,...,X_n,+,\cdot,') = F(X_1,X_2,...,X_n,\cdot,+,\cdot')$.
- Do not confuse duality with DeMorgan's theorems! $[F(X_1,X_2,...,X_n,+,\cdot)]' = F(X_1,X_2,...,X_n,\cdot,+,\cdot)$ $[F(X_1,X_2,...,X_n)]' = F^D(X_1,X_2,...,X_n,\cdot)$

- Duality (2) -

Υ	Z
LOW	LOW
HIGH	LOW
LOW	LOW
HIGH	HIGH
	LOW HIGH LOW

Υ	Z
0	0
1	0
0	0
1	1
	1

Х	Υ	Z
1	1	1
1	0	1
0	1	1
0	0	0

Electric function

X	Y	Z
LOW	LOW	LOW
LOW	HIGH	HIGH
HIGH	LOW	HIGH
HIGH	HIGH	HIGH

Positive-logic

Х	Υ	Z
0	0	0
0	1	1
1	0	1
1	1	1

Negative-logic

Х	Υ	Z
1	1	1
1	0	0
0	1	0
0	0	0

- Duality (3) -

Positive-logic

Negative-logic

- Standard Representation (1) -

- The most basic representation of a logic function is a truth table.
- A <u>truth table</u> lists the output of the circuit for every possible input combination.
- There are 2ⁿ rows in a truth table for an n-variable function.

Row	Х	Υ	Z	F
0	0	0	0	F(0,0,0)
1	0	0	1	F(0,0,1)
2	0	1	0	F(0, 1, 0)
3	0	1	1	F(0,1,1)
4	1	0	0	F(1,0,0)
5	1	0	1	F(1,0,1)
6	1	1	0	F(1, 1, 0)
7	1	1	1	F(1,1,1)

Row	Х	Υ	Z	F
0	0	0	0	1
1	0	0	1	0
2	0	1	0	0
3	0	1	l	1
4	1	0	0	1
5	l	0	1	0
6	1	1	0	1
7	1	1	l	1

■ There are 2⁸ (8=2³) different logic functions for 3 variables.

- Standard Representation (2) -

- Truth tables can be converted to algebraic expressions.
- A <u>literal</u> is a variable or the complement of a variable. Ex: X, Y, X'.
- A <u>product term</u> is a single literal or a logical product of two or more literals. Ex: Z', W·X·Y, W·X'·Y'.
- A <u>sum-of-products</u> (SOP) is a logical sum of product terms.
 Ex: Z' + W·X·Y.
- A <u>sum term</u> is a single literal or a logical sum of two or more literals. Ex:
 Z', W+X+Y, W+X'+Y'.
- A <u>product-of-sums</u> (POS) is a logical product of sum terms.
 Ex: Z' · (W+X+Y).

- Standard Representation (3) -

- A <u>normal term</u> is a product or sum term in which no variable appears more than once.
 - Examples (non-normal terms): W·X·X'·Z', W'+Y'+Z+W'.
- A n-variable <u>minterm</u> is a normal product term with n literals. Examples (with 4 variables): W·X·Y·Z', W'·X'·Y·Z.
- A n-variable <u>maxterm</u> is a normal sum term with n literals. Examples (with 4 variables): W+X+Y+Z', W'+X'+Y+Z.
- There is a correspondence between the truth table and minterms and maxterms.
- A minterm is a product term that is 1 in one row of the truth table.
- A maxterm is a sum term that is 0 in one row of the truth table.

- Standard Representation (4) -

Minterms and maxterms for a 3-variable function F(X,Y,Z)

Row	Х	Υ	Z	F	Minterm	Mextern
0	0	0	0	F(0,0,0)	X'-Y'-Z'	X + Y + Z
1	0	0	1	F(0,0,1)	x'-y'-z	X + Y + Z'
2	0	1	0	F(0, 1, 0)	X'-Y-Z'	X + Y'+ Z
3	0	1	1	F(0,1,1)	X'-Y-Z	X + Y'+ Z'
4	1	0	0	F(1,0,0)	X - Y'- Z'	X'+Y+Z
5	1	0	1	F(1,0,1)	X - Y'- Z	X'+ Y + Z'
6	1	1	0	F(1, 1, 0)	X - Y - Z'	X'+ Y'+ Z
7	1	1	1	F(1,1,1)	X · Y · Z	X'+Y'+Z'

- Standard Representation (5) -

- An n-variable minterm can be represented by an n-bit integer (the minterm number).
- In minterm i, a variable appears complemented if the respective bit in the binary representation of i is 0; otherwise it is uncomplemented.
- For example, row 5 (101) is related to minterm X·Y'·Z.
- In maxterm i, a variable appears complemented if the corresponding bit in the binary representation of i is 1; otherwise it is unprimed.
- For example, row 5 (101) is related to maxterm X'+Y+Z'.
- To specify the minterms and maxterms, it is mandatory to know the number of variables in the function and their order.

- Standard Representation (6) -

- Based on the correspondence between the truth table and the <u>minterms</u>, an algebraic representation of a logic function can be created.
- The <u>canonical sum</u> of a logic function is a sum of the minterms corresponding to truth table rows for which the function is 1.

Row	Х	Υ	Z	F
0	0	0	0	1
1	0	0	1	0
2	0	1	0	0
3	0	l	l	1
4	1	0	0	1
5	1	0	1	0
6	1	1	0	1
7	1	1	1	1

From the table:

$$F = \sum_{X,Y,Z} (0,3,4,6,7) = X' \cdot Y' \cdot Z' + X' \cdot Y \cdot Z + X \cdot Y' \cdot Z' + X \cdot Y \cdot Z' + X \cdot Y \cdot Z$$

- The notation $\sum_{X,Y,Z} (0,3,4,6,7)$ is a minterm list and means the sum of minterms 0,3,4,6, and 7, with variables X, Y, and Z.
- The minterm list is also known as the <u>on-set</u> for the logic function.

- Standard Representation (7) -

- Based on the correspondence between the truth table and the <u>maxterms</u>, an algebraic representation of a logic function can be created.
- The <u>canonical product</u> of a function is a product of the maxterms corresponding to input combinations for which the function is 0.

Row	Х	Υ	Z	F
0	0	0	0	1
1	0	0	1	0
2	0	1	0	0
3	0	1	1	1
4	l	0	0	1
5	1	0	1	0
6	l	1	0	1
7	1	1	1	1

From the table:

$$F = \prod_{X,Y,Z} (1,2,5) = (X+Y+Z') \cdot (X+Y'+Z) \cdot (X'+Y+Z')$$

- The notation $\prod_{X,Y,Z}$ (1,2,5) is a <u>maxterm list</u> and means the product of maxterms 1,2, and 5, with variables X, Y, and Z.
- The maxterm list is also known as the <u>off-set</u> for the logic function.

- Standard Representation (8) -

- It is easy to convert between a minterm list and a maxterm list.
- For a function of n variables, the minterms and maxterms are in the set {0, 1, ..., 2ⁿ-1}.
- A minterm or maxterm list contains a subset of these numbers.
- To switch between the lists, one takes the set complement.
- Examples:

$$\sum_{A,B,C} (0,1,2,3) = \prod_{A,B,C} (4,5,6,7)$$

$$\sum_{X,Y} (1) = \prod_{X,Y} (0,2,3)$$

$$\sum_{W,X,Y,Z} (1,2,3,5,8,12,13) = \prod_{W,X,Y,Z} (0,4,6,7,9,10,11,14,15)$$

- Standard Representation (9) -

- We have learned 5 possible representations for a combinational logic function.
 - A truth table;
 - An algebraic sum of minterms (the canonical sum);
 - A minterm list, using the \sum notation;
 - An algebraic product of maxterms (the canonical product);
 - A maxterm list, using the ∏ notation;
- Each one of these representations specifies exactly the same information.
- Given any of them, we can derive the other four using a simple mechanical process.

- Examples (1) -

• Ex.1: Let $F = X \cdot Y + X \cdot Y' \cdot Z + X' \cdot Y \cdot Z$. Derive the expression for F' in the product of sums form.

```
• F' = (XY + XY'Z + X'YZ)'

= (XY)' \cdot (XY'Z)' \cdot (X'YZ)'

= (X'+Y')(X'+Y+Z')(X+Y'+Z')
```

• Ex.2: Express the function $G(X,Y,Z) = X + Y \cdot Z$ as a sum of minterms.

```
■ G = X + Y·Z

= X·(Y+Y')·(Z+Z') + Y·Z·(X+X')

= XYZ + XYZ' + XY'Z + XY'Z' + XYZ + X'YZ

= X'YZ + XY'Z' + XY'Z + XYZ'+ XYZ

= \sum_{X,Y,Z} (3,4,5,6,7)
```

- Examples (2) -

- Ex.3: Derive the product-of-maxterms form for H = X'·Y' + X·Z.
- H = X'Y' + XZ = (X'Y'+X)(X'Y'+Z) = (X'+X)(Y'+X)(X'+Z)(Y'+Z) = (X+Y')(X'+Z)(Y'+Z)
- Each OR term in the expression is missing one variable:

$$- X+Y' = X+Y'+ZZ' = (X+Y'+Z)(X+Y'+Z')$$

$$- X'+Z = X'+Z+YY' = (X'+Y+Z)(X'+Y'+Z)$$

$$- Y'+Z = Y'+Z+XX' = (X+Y'+Z)(X'+Y'+Z)$$

Finally we combine these terms:

$$H = (X+Y'+Z) (X+Y'+Z') (X'+Y+Z) (X'+Y'+Z)$$

$$\prod_{X,Y,Z} (2,3,4,6)$$

- Examples (3) -

■ Ex.4: Derive the product-of-maxterms form for H = X'·Y' + X·Z.

X	Y	Z	Н
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

• From the table, we obtain:

$$H = \prod_{X,Y,Z} (2,3,4,6)$$

 $H = \sum_{X,Y,Z} (0,1,5,7)$

- Compare this solution with the solution of ex.3.
- Ex.5: Derive a standard form with a reduced number of operators for J =
 XYZ + XYZ' + XY'Z + X'YZ.
- J = XYZ + XYZ' + XYZ + XY'Z + XYZ + X'YZ
 = XY(Z+Z') + X(Y+Y')Z + (X+X')YZ
 = XY+XZ+YZ