Sistemas Digitais I

LESI - 2º ano

Unit 2 - Number Systems

João Miguel Fernandes www.di.uminho.pt/~jmf

ESCOLA DE ENGENHARIA
UNIVERSIDADE DO MINHO

DEP. DE INFORMÁTICA

Number Systems

Positional Number Systems (1) -

- We use daily a positional number system
- A number is represented by a string of decimal digits, where each digit position has an associated weight.
- 5365 = 5*1000 + 3*100 + 6*10 + 5*1
- 162.39 = 1*100 + 6*10 + 2*1 + 3*0.1 + 9*0.01
- A number D of the form $d_1 d_0$, $d_1 d_{.2} d_3$ has the value: D = $d_1^*10^1 + d_0^*10^0 + d_1^*10^{-1} + d_2^*10^2 + d_3^*10^3$
- 10 is called the base or the radix.
- Generally, the base can be any integer $r \ge 2$ and a digit position i has

Number Systems

Binary Numbers

- LOW or HIGH, charged or discharged). Digital circuits have signals that are normally in one of two conditions (0 or 1,
- These signals represent binary digits (bits), that can have 2 possible values
- The binary base (r=2) is used to represent numbers in digital systems
- Examples of binary numbers and their decimal equivalents:
- $11010_2 = 1*16 + 1*8 + 0*4 + 1*2 + 0*1 = 26_{10}$
- $100111_2 = 1*32 + 0*16 + 0*8 + 1*4 + 1*2 + 1*1 = 39_{10}$
- $10.011_2 = 1*2 + 0*1 + 0*0.5 + 1*0.25 + 1*0.125 = 2.375_{10}$
- MSB: most significant bit; LSB: least significant bit.

Number Systems

Summary

- Positional Number Systems
- Binary Numbers
- Octal and Hexadecimal Numbers
- Conversions
- Addition of Binary Numbers
- Representation of Negative Numbers
- Signed-Magnitude Representation

Two's-Complement Representation

- One's-Complement Representation
- Why Two's-Complement?
- Two's-Complement Addition and Subtraction
- Binary Codes for Decimal Numbers
- Gray Codes
- Character Codes

Number Systems

Positional Number Systems (2) -

- The book "2+2=11" has a mathematically wrong title if we use the decimal base.
- In which base is the title correct?

Natália Bebiano da Providência, 2001. ISBN 972-622-809-1. Matemática", Gradiva, Lisboa, 2+2=11, série "O Prazer da

Number Systems

- Octal and Hexadecimal Numbers (1) -
- The octal number system uses base 8 (r=8). It requires 8 digits, so it
- uses digits 0-7. The hexadecimal number system uses base 16 (r=16). It requires 16
- because their bases are powers of 2. These number systems are useful for representing multibit numbers,

digits, so it uses digits 0-9 and letters A-F.

- Octal digits can be represented by 3 bits, while hexadecimal digits can
- computers had their front-panel lights arranged in groups of 3. The octal number system was popular in the 70s, because certain be represented by 4 bits.
- preponderance of 8-bit bytes machines. Today, octal numbers are not used much, because of the

Number Systems

Octal and Hexadecimal Numbers (2) -

- It is difficult to extract individual byte values in multibyte quantities represented in the octal system.
- octal representation 12345670123₈? What are the octal values of the 4 bytes in the 32-bit number with the
- 01 010 011 100 101 110 111 000 001 010 0112

The 4 bytes in octal are: 123_8 227_8 160_8 123_8

- In the hexadecimal system, 2 digits represent a 8-bit byte, and 2n digits represent an n-byte word.
- Each pair of digits represent a byte.
- A 4-bit hexadecimal digit is sometimes called a nibble

Number Systems

Conversions (1) -

- It is easy to convert a binary number to octal or hexadecimal, and vice
- Binary Octal
- $110100101000_2 = 110\ 100\ 101\ 000_2 = 6450_8$ $110000110111010_2 = 011\ 000\ 110\ 111\ 010_2 = 30672_8$
- Binary Hexadecimal
- $110100101000_2 = 1101 0010 1000_2 = D28_{16}$ $11000110111010_2 = 0011 0001 1011 1010_2 = 31BA_{16}$
- Octal Binary
- $1324_8 = 001\ 011\ 010\ 100_2 = 1011010100_2$
- Hexadecimal Binary
- $19F_{16} = 0001\ 1001\ 1111_2 = 110011111_2$

2. Number Systems

Conversions (3) -

- Example of Decimal to Binary Conversions ($138_{10} = 10001010_2$)
- 138÷2 = 69 remainder 0
- 69÷2 = 34 remainder 1
- 34÷2 = 17 remainder 0
- 17÷2 = 8 remainder 1
- 8÷2 = 4 remainder 0
- $4 \div 2 = 2 \text{ remainder } 0$
- 2+2 = 1 remainder 0
- 1÷2 = 0 remainder 1

Number Systems

Octal and Hexadecimal Numbers (3) -

Binary	Decimal	Octal	String	Hexadecimal	String
0	0	0	000	0	0000
	_	_	100	-	0001
10	2	2	010	2	0010
11	ų	ų	011	ų	0011
100	4	4	100	4	0100
101	G	S	101	v	1010
110	ø	o,	110	o	0110
E	7	7	111	7	0111
1000	99	10	I	54	1000
1001	9	11	I	9	1001
1010	10	12	I	Þ	1010
1011	::	13	I	œ	1011
1100	12	14	I	Λ	1100
1101	13	15	I	0	1101
1110	14	16	I	т	1110
E	15	17		T	1111

Number Systems

Conversions (2) -

- substitutions. Arithmetic operations are required. In general, conversions between two bases cannot be done by simple
- Examples of conversions to the decimal base:
- $10001010_2 = 1*2^7 + 0*2^6 + 0*2^5 + 0*2^4 + 1*2^3 + 0*2^2 + 1*2^1 + 0*2^6 = 138_{10}$
- 4063₈ = 4*83 + 0*82 + 6*81 + 3*80 = 2099₁₀ 311.74₈ = 3*82 + 1*81 + 1*80 + 7*81 + 4*82 = 201,9375₁₀
- $19F_{16} = 1*16^2 + 9*16^1 + 15*16^0 = 415_{10}$
- $134.02_5 = 1*5^2 + 3*5^1 + 4*5^0 + 0*5^1 + 2*5^2 = 44,08_{10}$

2. Number Systems

Conversions (4) -

- Example of Decimal to Octal Conversions ($2099_{10} = 4063_8$)
- 2099÷8 = 262 remainder 3
- 262÷8 = 32 remainder 6
- 32+8 = 4 remainder 0
- 4÷8 = 0 remainder 4
- Example of Decimal to Hexadecimal Conversions ($415_{10} = 19F_{16}$)
- 415÷16 = 25 remainder 15 (F)
- 25÷16 = 1 remainder 9
- 1÷16 = 0 remainder 1

Number Systems

Addition of Binary Numbers -

- Addition and Subtraction of Non-Decimal Numbers use the same technique that we use for decimal numbers
- The only difference is that the table are distinct.
- Table for addition of two binary digits.
- Similar tables can be built for other bases
- Example of a binary addition:

X + Y	Y	X	
331	+ 141	190	
_	+		
0	_	_	
_	0	٥	
0	0		_
0	0	_	_
_	_	_	_
0	_	_	
_	0	_	
_	_	0	

-	-	-	-	0	0	0	0	cin
-	-	0	0	-	-	0	0	×
							0	
							0	
-	0	0	-	0	-	-	0	и

Number Systems

- Representation of Negative Numbers
- There are many ways to represent negative numbers with bits Signed-Magnitude Representation
- Complement Number Systems
- Radix-Complement Representation
- Diminished Radix-Complement Representation Two's-Complement Representation
- **Excess Representations**

Number Systems

- Signed-Magnitude Representation -
- A number consists of a magnitude and a symbol indicating whether the magnitude is positive or negative.
- sign (0=plus, 1=minus). In binary systems, we use an extra bit (usually the MSB) to indicate the
- Some 8-bit signed-magnitude integers:

 $11010101_2 = -85_{10}$ $01010101_2 = +85_{10}$ 11111111₂ = -127₁₀ 01111111₂ = +127₁₀

- $10000000_2 = -0_{10}$ $00000000_2 = +0_{10}$
- For n bits, number $\in \{-2^{n-1}+1...2^{n-1}-1\}$, n=8, number $\in \{-127...+127\}$. There are two representations of zero: "+0" e "-0".

Number Systems

- Two's-Complement Representation
- computers use it to represent negative numbers. The radix-complement is called 2's-complement, for binary numbers. Most
- The MSB of a number serves as the sign bit.
- The weight of the MSB is -2ⁿ⁻¹. The other bits have weight +2ⁱ
- For n bits, number $\in \{-2^{n-1}...2^{n-1}-1\}$; n=8, number $\in \{-128...+127\}$
- Only one representation of zero \Rightarrow an extra negative number.
- Some 8-bit integers and their two's complements:
- +17₁₀ = 00010001₂ ₩ 11101110₂ + 1 = 11101111₂ = -17₁₀
- $11111111_2 + 1 = 100000000_2 = 0_{10}$
- $-128_{10} = 100000000_2$ $011111111_2 + 1 = 10000000_2 = -128_{10}$

Number Systems

- One's-Complement Representation
- The diminished radix-complement is called 1's-complement, for binary
- The MSB of a number serves as the sign bit.
- The weight of the MSB is -2ⁿ⁻¹+1. The other bits have weight +2ⁱ
- For n bits, number $\in \{-2^{n-1}+1...2^{n-1}-1\}$; n=8, number $\in \{-127...+127\}$.
- Some 8-bit integers and their one's complements: Two representations of zero (00000000 and 11111111).
- $+17_{10} = 00010001_2$ $11101110_2 = -17_{10}$
- $+0_{10} = 00000000_2$ $111111111_2 = -0_{10}$
- $-127_{10} = 100000000_2$ 01111111₂= +127₁₀

Number Systems

Why Two's-Complement?

- Hard to build a digital circuit that adds signed-
- representations. In 1's-complement, there magnitude numbers. are two zero
- A 1's-complement adder 2's complement adder. is more complex that a

Decimal	Two's Complement	Ones' Complement	Signed Magnitude	Excess 2 ^{m-1}
-80		- 1	1	0000
-7	1001	1000	1111	1000
-6			1110	0010
Ŗ			1101	0011
-4			1100	0100
Ŀ			1011	1010
-2			1010	0110
			1001	1110
0			1000 or 0000	1000
-			0001	1001
12			0010	1010
w			1100	1011
4			0100	1100
u			0101	101
6			0110	1110
7			0111	Ξ

Number Systems

- Two's-Complement Addition and Subtraction (1) -
- We can add +n, by counting up (clockwise) n times.
- down (counterclockwise) n times. We can subtract +n, by counting
- between -8 and +7 is not crossed. Valid results if the discontinuity
- We can also subtract +n, by counting up (clockwise) 16-n times.

Number Systems

- Two's-Complement Addition and Subtraction (2) -
- $\underline{\text{Overflow}}$ occurs when an addition produces a result that exceeds the range of the number system.
- Addition of 2 numbers with different signs never produces overflow
- An addition overflows if the signs of the addends are the same and the sign of the sum is different form the addends' sign.
- Examples of overflowed additions:

Number Systems

- Two's-Complement Addition and Subtraction (3) -
- complement and unsigned used to handle both 2's-The same adder circuit can be
- However the results must be interpreted differently.
- between 15 and 0 is not crossed Valid results if the discontinuity

in which different strings A code is a set of bit strings

represent different numbers

(entities).

represented by a string of A decimal number is decimal numbers.

bits is a code word A particular combination of

Number Systems

Binary Codes for Decimal Numbers

People prefer to deal with

Number Systems

Gray Code (1) -

- mechanical position. Input sensor indicates a
- boundaries. Problems may arise at certain
- Boundary between 001 and 010 regions (2 bits change)
- code in which only one bit A solution is to devise a digital
- codes. changes between successive

2. Number Systems

- Gray Code (2)

- Gray code solves that problem!
- border. Only one bit changes at each
- input variable. Karnaugh maps, since adjacent cells must differ in just one Gray codes are also used in

2. Number Systems - Character Codes (1) -

- A string of bits need not represent a number.
- from some character set. In fact most of the information processed by computers is nonnumeric. The most common type of nonnumeric data is text: strings of characters
- Each character is represented in the computer by a bit string (code) according to an established convention.
- The most commonly used character code is ASCII (American Standard Code for Information Interchange).
- ASCII represents each character with a 7-bit string, yielding a total of 128 characters.

2. Number Systems - Character Codes (2) -

					b ₈ b ₅ b ₄ (column)	olumn)			
$b_3b_2b_3b_0$	Row (hex)	000	001	010	3	100	101 5	110 6	711
0000	0	- 1	DLE	SP	0	9	ы	,	'u
0001	_		DC1	-	ц	×	ю	ω	Д
0010	2		DC2		N	tti	Ħ	ь	н
0011	ω		DC3	#	ω	C	m	a	0
0100	,12		DC4	ζņ	44	D	н	۵	c+
1010	5		NAK	w	IJ	Ħ	Ч	Ф	_E
0110	G1		NAS	æ	Ø	ы	٧	н	٧
0111	7	BEL	ETB	-	7	۵	×	ω	×
1000	00		CAN	_	œ	н	X	ъ	×
1001	9		EM	~	φ	н	ĸ	μ.	×
1010	Α		SUB			J	М	ч.	N
1011	В		ESC	+		×	_	7	_
1100	С		FS	-	٨	٢	_	٢	_
1101	D		S		П	М	_	m	- .
1110	н		RS		v	N	>	n	2
Ξ	T		SU	_	٠,	0		0	DEL

ASCII (Standard no. X3.4-1968 of the ANSI).