
1

Sistemas Digitais I
LESI - 2º ano

Lesson 7 - Sequential Systems Principles

UNIVERSIDADE DO MINHO

ESCOLA DE ENGENHARIA

Prof. João Miguel Fernandes
(miguel@di.uminho.pt)

Dept. Informática

7. Sequential Circuits
- Combinational vs. Sequential Circuits -

§ Logic circuits are classified as combinational or sequential.
§ A combinational circuit is one whose outputs depend only on its 

current inputs. Example: TV channel selector.
§ A sequential circuit is one whose outputs depend on its current 

inputs, but also on the past sequence of inputs. Example: TV 
channel selector with channel up/down buttons.

§ It is impossible to describe the behaviour of a sequential circuit by 
means of a table that relates inputs with outputs.

§ To know where to go next, we need to know where we are now.
§ The state of the system must be memorised.

7. Sequential Circuits
- State (1) -

§ The state of a sequential circuit is a collection of state variables
whose values contain all the information about the past necessary 
to account for the circuit’s future behaviour.

§ In the TV channel example, the current channel number is the 
current state.

§ Given the current state, we can always predict the next state as a 
function of the inputs.

§ In a digital circuit, state variables are binary values.
§ A circuit with n binary state variables has 2n possible states.
§ Sequential circuits are also called finite-state machines.

7. Sequential Circuits
- State (2) -

§ The state changes occur at times specified by a clock signal.
§ A clock signal is active high if state changes occur at the clock’s 

rising edge or when the clock is HIGH. Otherwise, it is active low.
§ The clock period (T) is the time between successive transitions in 

the same direction. 
§ The clock frequency (f) is the reciprocal of the clock period (f=1/T).
§ Two types of sequential circuits:

– Feedback sequential circuits use ordinary gates and feedback loops to 
obtain memory elements (latches and flip-flops).

– Clocked synchronous state machines use latches and flip-flops to 
create circuits that are regulated by a controlling clock signal.

7. Sequential Circuits
- Bistable Elements (1) -

§ The simplest sequential circuit consists of a 
pair of inverters forming a feedback loop.

§ The circuit is called a bistable, since a digital 
analysis shows that it has two stable states.

§ If Q is HIGH, the bottom inverter has a LOW output, which forces the 
top inverter to produce a HIGH output (as assumed initially).

§ If Q is LOW, the bottom inverter has a HIGH output, which forces the 
top inverter to produce a LOW output (as assumed initially).

§ We can use a single state variable (signal Q) to describe the state of 
the circuit. There are 2 possible states, Q=0 and Q=1.

7. Sequential Circuits
- Bistable Elements (2) -

§ The bistable element is so simple that it has no inputs, so its state 
cannot be controlled.

§ When power is applied to the circuit, it randomly comes up in one state 
and stays there forever.

§ The analysis of the bistable from an 
analog perspective shows more 
aspects.

§ The bistable is in equilibrium if the input 
and output voltages of both inverters 
are constant values consistent with the 
loop connections and the transfer 
functions.



2

7. Sequential Circuits
- Bistable Elements (3) -

§ The bistable is in equilibrium at the 
points marked “stable”.

§ The third equilibrium point, labelled 
“metastable”, occurs when Vout1 and Vout2
have no valid logic values.

§ If the circuit operates at the metastable 
point, it could stay there indefinitely.

§ The point is METAstable, because 
random noise will tend to drive the circuit 
toward one of the stable points.

§ Ball and hill analogy for metastable point.

7. Sequential Circuits
- Latches and Flip-flops (1) -

§ Latches and flips-flops are the basic building blocks of most 
sequential circuits.

§ A flip-flop is a sequential device that samples its inputs and 
changes its outputs only at times determined by a clocking signal.

§ A latch is a sequential device that watches all of its inputs 
continuously and changes its outputs at any time.

7. Sequential Circuits
- S-R Latches (1) -

§ An S-R latch can be built with NOR 
gates.

§ QN is usually the complement of Q.
§ If S and R are both 0, the circuit 

behaves like the bistable element.
§ Either S or R may be asserted to force 

the feedback loop to a desired state.
§ S sets or presets the Q output to 1.
§ R resets or clears the Q output to 0.

7. Sequential Circuits
- S-R Latches (2) -

§ An S-R latch with active-low set and 
reset inputs may be built with NAND 
gates.

§ The operation of this latch is similar to 
the previous one, with two major 
differences.

§ First, S_L and R_L are active low, so 
the latch remembers its state, when 
S=R=1.

§ Second, when S_L and R_L are both 
asserted, both outputs go to 1 (not 0).

7. Sequential Circuits
- S-R Latches (3) -

§ An S-R latch is sensitive to its inputs at all times.
§ It may be modified to be sensitive to these inputs only when an 

enabling input C is asserted.
§ The circuit behaves like an S-R latch when C=1.
§ It retains its state when C=0.

7. Sequential Circuits
- D Latches (1) -

§ Latches are needed to 
store bits of information.

§ A D latch can be used for 
that purpose.

§ The D latch can be built 
from an S-R latch.

§ This latch eliminates the troublesome situation in 
S-R latches, where S and R may be asserted 
simultaneously.

§ When C=1, the latch is open and the Q output 
follows the D input. When C=0, the latch is closed.



3

7. Sequential Circuits
- D Latches (2) -

§ Delays exist for signals that propagate from the inputs to the Q output.
§ There is a window of time (setup time and hold time) around the falling 

edge of C when the D input must not change.
§ The latch’s output is unpredictable, if those times are not respected.

7. Sequential Circuits
- D Flip-flops (1) -

§ A positive-edge-triggered D flip-flop combines a pair of D latches to 
create a circuit that samples its D input and changes its outputs only at 
the rising edge of the CLK signal.

§ The first latch is called the master and it is open when CLK=0.
§ When CLK goes to 1, the master latch is closed.
§ The second latch, the slave, is open while CLK=1, but changes only at 

the begin of the interval, because the master is closed.

7. Sequential Circuits
- D Flip-flops (2) -

§ The triangle on the CLK input is a dynamic-input indicator
and indicates edge-triggered behaviour. 

§ A negative-edge-triggered D flip-flop simply inverts the clock input and 
actions occur on the falling edge of the clock signal.

7. Sequential Circuits
- D Flip-flop (3) -

§ Some D flip-flops have asynchronous inputs that are used 
to force its state, independent of the CLK and D inputs.

§ These inputs (PR and CLR) behave like the set and reset 
inputs on an S-R latch.

§ They should be used for initialisation and testing purposes. 
§ Some D flip-flops have the possibility to hold the last value stored. 

This is accomplished by adding an enable input.

7. Sequential Circuits
- S-R Flip-flops (1) -

§ S-R latches are useful for in control applications, where we may have 
independent conditions for setting/resetting a control bit.

§ If the control bit is supposed to change only at certain times with 
respect to a clock signal, we need an S-R flip-flop.

7. Sequential Circuits
- J-K Flip-flops (1) -

§ The problem of what to do when S and R are both asserted is solved 
in a master/slave J-K flip-flop.

§ The J and K inputs are analogous to S and R.
§ However, asserting J asserts the master’s S input only if Q=0.
§ Asserting K asserts the master’s R input only if Q=1.
§ Thus, if J and K are asserted simultaneously, the flip-flop goes to the 

opposite of its current state.



4

7. Sequential Circuits
- T Flip-flops (1) -

§ A T flip-flop changes state every tick of the clock.

§ The signal on the flip-flop’s Q output has half the frequency of the T 
input.

§ D and J-K flip-flops can be used to build a T flip-flop.

7. Sequential Circuits
- T Flip-flops (2) -

§ A T flip-flop can have an enable input.
§ The flip-flop changes state at the triggering edge of the clock, only if 

the enable signal EN is asserted.

§ D and J-K flip-flops can be used to build a T flip-flop with enable.

7. Sequential Circuits
- State Machine Design (1) -

§ A finite state machine (FSM) can be formally defined as the quintuple 
<S,I,O,F,G>, where:
– S represents the set of states.
– I represents the set of inputs.
– O represents the set of outputs.
– F represents the next-state function.
– G represents the output function.

§ The F function assigns to every pair of state and input combination 
another state (F:SxI→S).

§ The G function determines the output values in the present state.

7. Sequential Circuits
- State Machine Design (2) -

§ There are 2 types of FSMs, which correspond to 2 different definitions 
of the output function G.

§ For the Moore type, the G function is state-based (G:S→O).

§ An output symbol is assigned to each state of the FSM.
§ For the Mealy type, the G function is input-based (G:SxI→O).

§ An output symbol is defined by a pair of state and input symbol.
§ The FSM model assumes that time is divided into uniform intervals 

and that transitions occur only at the beginning of each time interval.
§ There is a clock signal that defines the time intervals, called clock 

cycles.
§ Each FSM model can be implemented with flip-flops and logic gates.

7. Sequential Circuits
- State Machine Design (3) -

§ General structure of a clocked synchronous Mealy State Machine:

§ The State Memory is a set of flip-flops that store the current state of 
the machine. The flip-flops are connected to a common clock signal.

§ Both F and G are strictly combinational circuits.

7. Sequential Circuits
- State Machine Design (4) -

§ General structure of a clocked synchronous Moore state machine:

§ The only difference between Mealy and Moore machines is in how the 
outputs are generated.

§ To simplify the G block to just wires, we can use the output-coded 
state assignment, where the state variables serve as outputs.



5

§ The steps to design a clocked synchronous state machine are:
– Read the natural language description or specification of the system.
– Draw a state diagram, using mnemonic names for the states.
– Construct a state/output table.
– (Optional) Minimise the number of states in the table.
– Choose a set of state variables and assign state combinations to each 

state.
– Substitute the state names for the corresponding state combinations in the 

table.
– Choose a flip-flop type for the state memory.
– Construct an excitation table that shows the excitation values required to 

obtain the desired next state for each state/input combination.
– Derive excitation equations.
– Derive output equations.

7. Sequential Circuits
- State Machine Design (5) -

§ Example of a state machine problem:
Design a state machine with inputs A and B, and output Z that is 1 if:

– A had the same value at each of the two previous clock ticks, or
– B has been 1 since the last time that the first condition was true.

Otherwise, the Z output is 0.
§ Right now, the meaning of the specification may not be clear.
§ The designer has to transform an ambiguous specifications written in 

natural language into an unambiguous state table.
§ The machine is of Moore type, since the output depends only on the 

current state, that is, what happened in previous clock periods.

7. Sequential Circuits
- State Machine Design (6) -

7. Sequential Circuits
- State Machine Design (7) -

7. Sequential Circuits
- State Machine Design (8) -

§ The next step is to determine how many binary variables are needed 
to represent the states in the state table.

§ After that, specific combinations are assigned to each state.
§ The binary combination of state variables assigned to a particular 

state is a coded state.

7. Sequential Circuits
- State Machine Design (9) -

§ With n flip-flops, 2n states can be coded.
§ The number of flip-flops needed to code 

s states is log2s.
§ In our problem, there are 5 states, so 3 

flip-flops are required.

§ There are several alternatives to code the 5 states. 

7. Sequential Circuits
- State Machine Design (10) -

§ The simplest assignment of s coded states is to use the first s binary 
integers in binary counting order.

§ This assignment does not always lead to the simplest excitation 
equations, output equations and resulting logic circuit. 



6

§ The state assignment has a major impact on circuit cost.
§ It may interact with other factors, such as the choice of storage 

elements and the realisation approach for excitation and output logic.
§ How to choose the best state assignment for a given problem?
§ In general, the only formal way to find the “BEST” assignment is to try 

ALL the assignments.
§ That is not possible to do by hand!!! For our example, there are 6.720 

different ways to assign the 3-bit combinations to the 5 states.
§ Designers must rely on practical guidelines to achieve reasonable 

state assignments.

7. Sequential Circuits
- State Machine Design (11) -

§ Guidelines for state assignment:
– Choose an initial coded state into which the machine can easily be forced at reset 

(typically, 000...0 or 111...1).
– Minimise the number of state variables that change on each transition.
– Maximise the number of state variables that don’t change in a group of related 

states.
– Exploit symmetries in the problem specification and the corresponding 

symmetries in the state table. If one state or group means almost the same thing 
as another, once an assignment is established for the first, a similar assignment 
(differing in one bit) should be used for the second. 

– Decompose the set of state variables into individual bits or fields, where each one 
has a well defined meaning with respect to the input effects or the output 
behaviour.

– Consider using more than the minimum number of state variables to make 
possible a decomposed assignment.

7. Sequential Circuits
- State Machine Design (12) -

§ Some of the previous guidelines were used in 
the decomposed state assignment. 

§ INIT is 000, which is easy to force with the 
asynchronous CLR input of the flip-flops.

§ INIT is never re-entered, once the machine is 
working. Q1 is used to indicate whether or not 
the actual state is INIT. 

7. Sequential Circuits
- State Machine Design (13) -

§ Q2,Q3 are used to distinguished among the other 4 states.
§ Q3 gives the previous value of A.
§ Q2 indicates that the condition for a 1 output are satisfied in the 

current state.

§ The one-hot state assignment can be adapted to 
any state machine. 

§ This assignment uses more than the minimum 
number of state variables: it uses 1 bit per state.

§ This usually leads to small excitation equations, 

7. Sequential Circuits
- State Machine Design (14) -

since each flip-flop must be set to 1 for transitions into only one state. 
§ The almost one hot assignment uses the no-hot combination for the 

initial state.
§ This eases the reset of the machine, since the initial state is 00...0.

§ There are unused state codes when the number of states is less than 
the number of state variable combinations.

§ How to consider those unused states?
§ In a minimal risk approach, it is assumed that the machine may go to 

an unused state, due to a hardware failure, for example.
§ For all the unused states, an explicit transition to a safe state is made.
§ In a minimal cost approach, it is assumed that the machine will never 

enter an unused state.
§ The next state entries of the unused states can be marked as “don’t 

cares”.

7. Sequential Circuits
- State Machine Design (15) -

§ A transition table is obtained by substituting the state names by the 
corresponding code states.

§ The transition table shows the next coded state for each combination 
of current coded state and input.

7. Sequential Circuits
- State Machine Design (16) -

§ For the state machine example, the 
transition table is obtained by using the 
decomposed state assignment.

§ The next step is to write an excitation 
table that shows the flip-flop excitation 
values needed to make the machine go 
to the desired next coded state.



7

§ The structure and content of the excitation table depend on the type 
of flip-flop (D, J-K, T, etc.) being used.

§ Nowadays, most state-machine designs use D flip-flops, because of 
their availability in both discrete packages and PLDs, and their ease 
of use.

7. Sequential Circuits
- State Machine Design (17) -

§ The characteristic equation of a D flip-flop 
is: Q* = D.

§ For D flip-flops, the excitation table is 
identical to the transition table, except for 
the labels.

§ The excitation table is like a truth table for 3 combinational 
functions (D1,D2,D3) of 5 variables (A,B,Q1,Q2,Q3). 

§ The information in the excitation table can be transferred to 
Karnaugh maps, to find minimal expressions for each function.

§ The excitation table does not specify functional values for all 
input combinations, since the information for the unused states is 
not specified.

§ For our example, we will take the two approaches previously 
referred: minimal risk and minimal cost.

7. Sequential Circuits
- State Machine Design (18) -

§ In a minimal-risk approach, the 
next state for each unused 
state is 000. 

§ From the maps the following 
expressions can be obtained: 
D1 = Q1+Q2’·Q3’
D2 = Q1·Q3’·A’+Q1·Q3·A+Q1·Q2·B
D3 = Q1·A+Q2’·Q3’·A

§ Z is active for states 110 and 
111
Z = Q1·Q2·Q3’ + Q1·Q2·Q3

= Q1·Q2

7. Sequential Circuits
- State Machine Design (19) -

§ In a minimal-cost approach, 
the next state for each unused 
state is a “don´t-care”. 

§ From the maps the following 
expressions can be obtained: 
D1 = 1
D2 = Q1·Q3’·A’+Q3·A+Q2·B
D3 = A

§ Z is active for states 110 and 
111 and don’t-care for the 
unused states.
Z = Q2

7. Sequential Circuits
- State Machine Design (20) -

7. Sequential Circuits
- State Machine Design (21) -

§ State diagrams are often used to design state machines.
§ Designing a state diagram is similar, but simpler, to design a state 

table.
§ A state diagram can contain some ambiguities, which is not possible 

in a state table.
§ In an improperly constructed state diagram, the next state for some 

input combinations may be unspecified, which is undesirable.
§ It is also possible that multiple next states exist for the same input 

combination.

7. Sequential Circuits
- State Machine Design (22) -



8

§ The next example is a state machine that control the tail lights of a car.
§ The machine has 2 input signals, LEFT and RIGHT.
§ It also has an emergency HAZ input that makes the 6 lights to flash.

7. Sequential Circuits
- State Machine Design (23) -

§ State diagram and Output table for the 
car lights controller.

7. Sequential Circuits
- State Machine Design (24) -

§ Multiple inputs asserted simultaneously 
(LEFT and HAZ at IDLE) are not handled.

§ Priority was given to the HAZ input.
§ When LEFT and RIGHT are asserted 

simultaneously, it is assumed that an 
emergency is requested.

§ The new state diagram is unambiguous.
§ The transition expressions on the arcs 

leaving the same state are mutually 
exclusive and all-inclusive.

– No two expressions are 1 for the same 
input combination.

– Some expression is 1 for every input 
combination

7. Sequential Circuits
- State Machine Design (25) -

§ Once a left- or right-turn cycle has 
begun, if must be finished even if an 
emergency is requested.

§ It is safer to have the machine go into 
LR3 state as soon as possible.

§ There are 8 states, so 3 flip-flops are 
needed to synthesise the circuit.

7. Sequential Circuits
- State Machine Design (26) -

7. Sequential Circuits
- State Machine Design (27) -

§ Most of the VHDL features that are needed to support clocked 
synchronous state machines were already introduced.

§ A VHDL process and the simulator’s mechanism for tracking signal
changes form the basis for handling sequential circuits in VHDL.

§ The event attribute can be attached to a signal name to yield a 
value that is true if the signal has changed value.

§ This allows edge-trigger behaviour to be modelled.

7. Sequential Circuits
- State Machine Design (28) -



9

§ Positive-edge-triggered D flip-
flop with asynchronous clear.

§ The CLR input overrides any 
behaviour on the CLK input.

§ CLK’event is true for any 
change on CLK.

§ Two other ways to construct 
processes or statements with 
edge-triggered behaviour.

7. Sequential Circuits
- State Machine Design (29) -


