Sistemas Digitais |
LESI - 29 ano

Lesson 6 - Combinational Design Practices

Prof. Joao Miguel Fernandes
(m guel @li . um nho. pt)

Dept. Informatica

" UNIVERSIDADE DO MINHO

5 4%; ESCOLA DE ENGENHARIA

6. Combinational Practices
- PLDs (1) -

The first PLDs were Programmable Logic Arrays (PLAS).

A PLA is a combinational, 2-level AND-OR device that can be
programmed to realise any sum-of-products logic expression.

A PLA is limited by:

- the number of inputs (n)
- the number of outputs (m)
- the number of product terms (p)

We refer to an “n x m PLA with p product terms”. Usually, p << 2",

An n x m PLA with p product terms contains p 2n-input AND gates
and m p-input OR gates.

6. Combinational Practices
- PLDs (2) -

Each input is connected to a
buffer that produces a true 2
and a complemented i

version of the signal. T T 1

Potential connections are A~ o
indicated by Xs. 8

The device is programmed i
by establishing the needed sl
connections.

The connections are made A 4x3 PLA with 6 product terms.

by fuses.

6. Combinational Practices

- PLDs (3) -
« Compact representation of « O1=1112+1112"13"-14
the 4x3 PLA with 6 product 02=1113 +11"13:14 + 12
terms. 03=1112 + 1113 + 11214’
3 b y— Pyt
12 —E;! 2 : PR — -
13 —[:3 2 ? 3 s : S
14 % ; 7 % : + :
JUUUUU UUUUUU
P1| P2 P3| P4| P5| P& _— P1| P2| P3| P4| P5| Ps
1.t % } >—o
| D - D -
> T

6. Combinational Practices

- PLDs (4) -
Another PLD is PAL
(Programmable Array PAL16L8
Logic). i
- - . Elfa S
A PAL device has a fixed | eele
OR array. “fla caf
—lis loaft
In a PAL, product terms are _tlis osfs
not shared by the outputs. e 8 -
B T —
A PAL is usually faster than —“lis osl=
a similar PLA. —ie

6. Combinational Practices
- PLDs (4) -

Part of the logic diagram of the PAL 16L8.

¥ (13
oolza TR 0 20ZIZEE 2452657 2851031
i} [
z
y (14)
2 — 1
5
(2 |
12 —| E T 5 Ii
a =
]
" [15%
— Q2
—

)

6. Combinational Practices
- Decoders (1) -

A decoder is a circuit that converts coded inputs into coded outputs.

Usually, the input code has fewer bits than the output code.
The most common decoder Is an n-to-2" or binary decoder.

A binary decoder is used when one of 2" outputs needs to be
activated based on an n-bit input value.

D=

mpuls Quipuls o4
daoodar "
EN H IO Y3 O¥E W YO
— To— I14.—DQ T

PR 5 s e b i M
R MR g o 1 0 Ter— .,_}
1 1 0 o 1 o 0 — EN Ya—
1 1 1 1 0 o 0

EN i

Y0

1

2

h§L

6. Combinational Practices
- Decoders (2) -

« A 74x139 IC has two independent 2-to-4 decoders.

Tl 153G
oie 1o —
: =]
“l1a :; o pte o
3 & GL B A YaL Y2 L wiL volL
— 1B 173 O—
1 x x 1 1 1 1
15 ol oz v by 12 o 0o 0 1 1 1 0
O : 1 o o 1 1 1 0 1
i 211 'D—m o 1 0 1 0 1 1
- 28 2v2 Dg— o1 1 4] 1 1 1
2B YEO——

6. Combinational Practices

- Decoders (3) -

A 74x138 IC has one 3-t0-8 decoder.

T34

Oulpuls
ve_L Y1_L YoL

¥F_L O OWe_ L O WhR L W4 L YAl

A

B

Z

mpuls
GER L O GPE L

31

1

Y2
Y3
4
Yo
YB
A

6. Combinational Practices
- Decoders (4) -

TAN138

= Multiple decoders can be
used to decode larger code
words. MO

M1

= The top decoder (Ul) is ks
enabled when N3 is 0, and s]
the bottom decoder (U2) is) u
enabled when N3 is 1.

= To handle larger code
words, decoders can be
cascaded hierarchically.

DEC11_L
DEC12 L
DEC13_L
DEC14_L
DEC15_L

6. Combinational Practices
- Decoders (5) -

To handle larger code
words, decoders can be
cascaded hierarchically.

A 5-t0-32 decoder can be
built with one 2-to-4 and
four 3-t0-8 decoders.

The 2-to-4 decoder treats
the high order bits.

The 3-t0-8 decoders
treat the low-order bits.

T enN3
]

Ll
N

TENT

TAL L

— ZAL

—O LAl

BT | 2L

LK

TEexdig 2

TEpxENg T

et LLT ol p—

T axomd

|'.‘ o " G {} o
Ly T 1 A] []
gge

L= - = R |

TELNPL

L BN E)) L]
BES

mmmmmmm

AL

N uu
M B Emﬁ)
@ E -

mmmmmmmmm

AE LA

. 8]
L T 1] []
gga

mmmmm

DDDDDDDD
mmmmmmmmmm

mmmmmmmm
rrrrrrrr

e R B e e R

r—rrrrrrrrrr

DDDDDDDD
1

182

IIIIIIIIII
rrrrrrrrr

DDDDDDDD

rrrrrrrrrrrr

HELRTL

6. Combinational Practices
- Decoders (6) -

« There are several ways to write decoders in VHDL.

= The most primitive would be to write a structural description
equivalent to the logic circuit on slide 7.

library IEEE;
uze IEEE_s=td_logic_1l1649._411;
entity Vitocddeco iz
port (10, I1, EH: 4Hin STD_LOGIC;
Yo, 1, ¥2, Y3: out STD LOGIC)5
end VZ2toddeo;
&ar chitecture Vitoddeco = of Vitoddecs i=
mignal HOTIO, HOTI1: STD_LOGIC;

component inw port [(I: in STLD _LOGIC; O: out STD _LOGIC 17 =nd componenk;
component Aand3d port (IO, I1, I2: in STD _LOSIC; O: cut STOD_LOGSIC | ;7 #od component;s
Eegin

Ul: inw port map (I0,HOTIO) ;
U2: inw port map (I1,HOTI1;
T3: a&and3d port map (HOTIO,HoTI1, EHN,Y0) ;

U4 : sand3d port map I0,H0TI1,EHN,Y]1);
U5: &and3 port map (HOTIO, I1,EH, Y21 ;
T5: s&and3d port map Ia, I1,EH,T3;

=nd V2toddec =5

6. Combinational Practices
- Decoders (7) -

= The second alternative Is using the dataflow style.

libracy IEEE;
use IEEE.ztd logic 1l64_s11;

=ntity WTdx133 iz

port (51, S2A_L, G2BE_L: in STD_LOGIC; —— enabkle input=z
A dn STD_LOGIC VECTOER (2 downko 0] —— omleact inputez
¥ L: ot STD LOGIC _VECTOR (0 to T 17 -— decoded outpuk =

end VWT4x133;

architecture WTdxl33 m of WT4x138 iz
zignal ¥ L i: 5TD _LOSIC VECTOR (0 to T);
bergin
with A #elect Y_L_i <=
"01111111" when "0OO0",
"10111111" when "00l1",
"11011111" when "0l0',
"11101111" when "011",
"11110111" when "loo',
"11111011" when "10l",
"111311101" when "110",
"11111110" when "111",
"11111111" wheno others;
Y L <= Y L i wheo (6]l &and not G2ZA_L &and not GZE _LI='1" else "11111111";
end WTdxl138 _m;

6. Combinational Practices
- Decoders (8) -

Another alternative is using the behavioral style.

architecturse Vikoddes - of WVikoddes ix

begin
proce == sl, G2, G3, A
warisble i: IHTEGER range 0 to T
bEegin
¥ <= "oooooooo";
if (Gl and G2 &and G3) = '1l' then

Eor i dn 0 to T loop
if i=COHV_INTEGEER(R] then T(il <= '1'; end if;
=nd loop;
end if;
=nd process;
=od Vitoddeco_ o

6. Combinational Practices

- 7-Segment Decoders (1)

A 7-segment display 1s used in watches, calculators, and devices to

show decimal data.
= Adigit is displayed by illuminating a subset of the 7 line segments

L f7t I ja J / ﬁ I
b 0 i f. fl f. T
i L] g f.f/' L] [S— |

JI|
= A 7-segment decoder has a 4-bit BCD as its input and the 7-segment

.
—
———_|

code as its outpult.

6. Combinational Practices

- 7-Segment Decoders (2) -
Oulpuis

npul's

Exercise 1:

- L
D . D ~ ©
n ™79 © O
£228 258
.mmfd?_Hmd

» nH = 3 ==
c Ve o5 020
S82Ecest
25 § X = o D
O3 odw lLIi=c o

|]

lllllllllllllllll

lllllllllllllllll

ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ

11111111111111111

lllllllllllllllll

lllllllllllllllll

ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ

o

BI_L

IIIIIIIIIIIIIIIII

ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ

ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ

ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ

0 ™ ™ ™= ™ ™ ™ = = = = = = = = =

6. Combinational Practices

- Encoders (1) -

An encoder is a circuit whose output code has normally fewer bits

than its input code.

The simplest encoder to build is a 2"-to-n or binary encoder. It has
the opposite function as a binary encoder.

Equations for an 8-to-3 encoder :
YO=I1+I3+I5+17
Y1=12+I13+16+17
Y2=14+15+16+17

Only 1 input is active at a time.

What happens if 2 inputs are
asserted (ex: 12 and 14)?

27 inputs €

Binary
encoder
0 ks
11 L
|2
* 1'1"'”_1
|Er?—1

» » noutputs

6. Combinational Practices
- Encoders (2) -

To implement a request
encoder, the binary
encoder does not work!

It assumes that only 1
Input is asserted.

Requesats ¢
for service

" RECQT ——
REG2 ——
REQE ——

. REQN —

Request
ancodar

— N, Reguestor's
number

If multiple requests can be made simultaneously, a priority must
be assigned to the input lines.

When multiple requests are made, the device (priority encoder)
produces the number of the highest-priority requestor.

6. Combinational Practices
- Encoders (3) -

oo
Input 17 has the highest priority. 1 sl
Outputs A2-A0 contain the number of the] ||54 :::. —
highest-priority asserted input, if any. I
The IDLE output is asserted if no inputs e e
are asserted. > 1S

Intermediate variable Hiis 1, if i

is the highest priority 1-input: » AD=HL+H3+HS+H7
H7 =17 H6 = 1617 AL = H2 + H3 + H6 + H7

H5=15-16"17" H4=14.15"16"I7 A2 =H4 + H5 + H6 + HY
... (Similar equations for H3-HO) « [DLE=10"11"12"13"14"-15-16"-17"

6. Combinational Practices
- Multiplexers (1) -

multiplexer
A multiplexer (mux) is a digital switch. enable EN
It connects data from one of n sources select =3[SEL
to its output. i il
The SEL input selects among the n :}’:b D "
7 N pdata ¢ 7 : Y = data
sources, so s = €og, nu sources |+ | output
¥
When EN=0, Y=0; ==15
When EN=1, the mux Is working.

Multiplexers are used in computers between the processor’s
registers and its ALU, to select among a set of registers which one
IS connected to the ALU.

6. Combinational Practices
- Multiplexers (2) -

A 74x151 IC has one 8- 743151 s g
Input, 1-bit multiplexer. _gfen T A
The select inputs are ; i ® x x T
named A,B,C, where C fow ols oD oh
s the MSB D T L S f e
The enable input EN_L 2 9wz oL Do
is active low. e Pon W 1 b ue
Both active-low and high ~ —7 0 i X 8 By B
0 1 1 1 DY D7

versions of the output
are provided

6. Combinational Practices

- Multiplexers (3) -

FE A ET

. —o ¢
A 74x157 IC has one 2-input, s
. . — 1A 4
4-bit multiplexer. I PO
. . "l 24, 7
The select input is S. 7
. . . AR Ay |2
The enable input G_L Is active 138
|OW 1= j; 4% =
The truth table was extended
and inputs appear at the ta puts Dutpuis
outputs columns. GL = Yy 2y ar 4y
1 * 0 0 0 0
0 0 1A ZA a4 a4
0 1 16 2B 4B 4B

6. Combinational Practices
- Multiplexers (4) -

A multiplexer can be used to S \‘ K DSTA
SHCE — DSTE
select one of nsources of data .1 ,,, BUS T

to transmit on a bus. . ;
At the other end, a demultiplexer

can be used to route the bus to SACSEL DSTSEL
one of m destinations.

D3TEL

The function of a multiplexer is the 2-to-4 decoder
Inverse of a demultiplexer’s. SACDATA ——{ G YO — DSTODATA
.] 1 DST1DATA
A 1-bit, n-output demultiplexer has one ~ bsmeo—— & ¥2—— DST2DATA
DSTSEL 1 B Y3 DSTIDATA

data input and s inputs to select one of
the n=25 data outputs.

6. Combinational Practices
- Multiplexers (5) -

= |tis easy to describe multiplexers in VHDL.
« In the dataflow style, a SELECT statement is required.

library IEER:
uz+ IEEE. std_1og io_died. &ALl

2ntity mikdiaPb ix

port |
S im STD LO3IC WECTOR (1 dowatos O) -— Sale-t :i..i':l:|:-1.1'|::lr g-2 ==: A-D
A, E, C, D' ia STD_LOQIC_VECTOR (1 to B): —-— DIata bus :i..?:l]:-1.11:
T ot STD_TOJIC_WECTOR (1 to B) == Data bus output

1:
21d kdiafhb:

architescturs DUKALiaFE of DUKdinPFb ix
tr=gin
With T =salact ¥ +=

A whaa YooM,

E whaa HOLM,

C whaa "1o0M,

I whana "1l1",

(others =: '1'] whemn others:! -- this oraates aa BE-bit vweactor of '1'
=14 Ik dinBEb

6. Combinational Practices
- Multiplexers (6) -

= |n a behavioural architecture, a CASE statement Is used.

architect urs DuxdiaBp of DuxdiaBPb ix
tragin
proo=ss(5, A, E, O, D]
tragin
Ccazs 5 ois
wh=na HooH
whaan "oL¥
whaa "lo¥
whana "lL¥
whan others =:
= cazes!
2n1d process!
=10 mxdiagp !

MM H
-
I T

I

s =: '1n'y; -- B-bit wactor of '11

g
4
Il

= [tis easy to customise the selection criteria in a VHDL multiplexer
program.

6. Combinational Practices
- XOR and Parity Circuits (1) -

An Exclusive-OR (XOR) gate isa 2-input =™ xav w@wew
gate whose output is 1, if exactly one of its :" : f”:”* fmlﬂﬂi
Inputs Is 1. = : :

An XOR gate produces a 1 output if its i T ; T

Input are different.

An Exclusive-NOR (XNOR) is just the opposite: it produces a 1 output
If its Inputs are the same.

The XOR operation is denoted by the symbol A.
XAY=XY+XY

6. Combinational Practices
- XOR and Parity Circuits (2) -

There are 4 symbols for each XOR and XNOR function.

These alternatives are a consequence of the following rule:

- Any two signals (inputs or output) of an XOR or XNOR gate may be
complemented without changing the resulting logic function.

In bubble-to-bubble design we choose the symbol that is most
expressive of the logic function being performed.

6. Combinational Practices
- XOR and Parity Circuits (3) -

= n XOR gates may be cascaded
to form a circuit with n+1 inputs i%
and a single output. Thisisa /
odd-parity circuit, because its 3} Do
output is 1 if an odd number of

Its inputs are 1. 3
- If the output of either circuit is EJ:D
Inverted, we get an even-parity ¢ .. j:)j}
circuit, whose output is 1 if an :
even number of its inputs are 1. " ijjD

6. Combinational Practices

- XOR and Parity Circuits (4) -

« VHDL provides the primitive operators xor and xnor .
= A 3-input XOR device can be specified in VHDL dataflow style

program.

litrary IEEE:
us= IIII:E.!.'I:-:'I_l-:-g:i.-:'_iitl-l.dll_!
@t ity wwmor® is
port (A, E, C! 1m 5TD_LOSIC!
T ot STD_LissIc]!
2 vyHoT 2!

Archit=-ture vxXor? of vyHor? i=s
bagina

T = A MOT E HoOT !
=0 yHoIr X!

6. Combinational Practices
- XOR and Parity Circuits (5) -

libtrary IEEE:

= A 9-input parity function uss IEEE.std_logic_116d.aLll;

1Fi =0t it Aarityy is
Can be Specmed]:-:-1':;'::l]:II: J_!I::l SITD_TAG I _VECTOR (1 to 9!
behaviourally. EVEN, OOD: cut STO_LOGIC)

=2 paritys:
architecturse paritysyp of paritys is
b=gin
Frocess (I
variabla p ! =STD_LOGIC!

bagin
P o!= I(1):!
for j im X to 3 loop
if I({j1 = '1' than p '= Act p! =nd LI
=0 Loop!
oD = p!

EVEH += act p!
@] pProcess!
220 parityyp!

6. Combinational Practices

- Comparators (1) -

Comparing two binary words is a common operation in computers.

A circuit that compares 2 binary words and indicates whether they
are equal Is a comparator.

Some comparators interpret their input as signed or unsigned
numbers and also indicate an arithmetic relationship (greater or less
than) between the words.

These circuits are often called magnitude comparators.
XOR and XNOR gates can be viewed as 1-bit comparators.

The DIFF output is asserted o N

If the inputs are different. po—=2)

DIFF

1

6. Combinational Practices

- Comparators (2) -

= The outputs of 4 XOR gates can be ORed to create a 4-bit comparator.

Ap—

B

Al —
Bl —2

AZ

Bz —L

Az =
ES IE

TAREE

a DIFFa

L1

& OIFF1 o

a DIFFz -

[}

(R
11 DIFF3

U1

Tdxoe
, DRM L

Lz
TdxoE
+ DFz3_L

TdxoD

1

=

Lz

« The DIFF output is asserted if any of the input-bit pairs are different.
= This circuit can be easily adapted to any number of bits per word.

6. Combinational Practices

- Comparators (3) -

= An iterative circuit is a combinational circuit with the following structure.

priman inputs
y ~ 9
Flg cazcading Fl, cazcading Pl
inpu oLipL
H Hll ﬂ .llll- H
Wy .
Pl \ FI Pl
Co = F C Cp
—|Cl modale CO S| G modale GO oo —Cl module GO ")
/ PO PO PO \
s
boundary boundary
inpuis oUipUls
POy PO, PO

b
priman ouputs

= The circuit contains n identical modules, each of which has both primary
Inputs and outputs and cascading Inputs and outputs.

= The left-most cascading inputs are usually connected to fixed values.

6. Combinational Practices

- Comparators (4) -

« Two n-bit values X and Y can be compared one bit at a time using a
single bit EQ; at each step to keep track of whether all of the bit-pairs
have been equal so far:

» 1.SetEQ,to1andsetitoO. i % oMP
2. If EQ;is 1 and X=Y;, set EQ,,, to 1. T

Else set EQ,,, to 0. D—” =

3. Increment i. S

4.1f1<n, go to step 2.
X0 Yo o NH-11 Y[N-13
| | | |
X L) x by x L

CMP EQ CMP EQ EQi-1y| _ ©MF EQN

1 —=| BEQI BaO ——=| E1I Bt maa ———=| EQ BOD ———

6. Combinational Practices

- Comparators (5) -

Several MSI comparators have been developed commercially.
The 74x85 Is a 4-bit comparator.

T4¥Es

It provides a greater-than output, a less-than [s
output and an equal output. —{AEQBIN AEQEOLT -
) . AGTEIN AGTEALT
The 74x85 also has cascading inputs for P
combining multiple chips to create comparators] oo
for more than 4 bits. - B
AGTBOUT = (A>B) + (A=B) - AGTBIN - e
AEQBOUT = (A=B) - AEQBIN _ d

ALTBOUT = (A<B) + (A=B) - ALTBIN

6. Combinational Practices

- Comparators (6) -

With three 74x85 circuits, a 12-bit comparator can be built.

+50

?R Td¥=s T4¥=s Td¥=s
z ;:I'E';j z ALTEIN ALTEQLT q :‘:'::I'E';j : ALTEIN ALTEQLT 5 ;'E'WE' : ALTEIN ALTEOLT ;;'é;r
e AEQEIN AEQBOUT ———=="—— AEQEIN AEQBOLT - mﬂm'a —|AEQEIN AEQEOUT =
‘I AGTEIN ASTEOUT 2 AGTEIN AGTEOLT | AGTEIN AGTEOLT
1 4 i]u] 10 1 xha 17 1 D03 17
O | s 0 -] 79 O 3 5
o 1l Eo .3 -] Eo a g B
XDh1 12 xom 1= 1] 12
= Al = A1 o A1
- —
:ml — 1 }mﬁ E1 }m:" 'l En
'fni h AT Ynﬁ | A 'fn'lﬂ 13 A
:{DE I: BE :'l:l:: :4 2 :'l:l:l":I ‘: Be
E] 15 .I!|.73 : 2] .I!US 11 a .I!US
Y03 - YO7 Es YO11 1 Es
¥D[a-11]
D[a-11]

6. Combinational Practices

- Comparators (7) -

VHDL has comparison operators for all of its built-in types.
Equality (=) and inequality (/ =) operators apply to all types.

For array and record types, the operands must have equal size
and structure, and the operands are compared component by
component.

VHDL's other comparison operators (>, <, >=, <=) apply only to
Integers, enumerated types and one-dimensional arrays of
enumeration or integer types.

6. Combinational Practices
- Adders, Subtractors and ALUs (1) -

Addition is the most commonly performed arithmetic operation in
digital systems.

An adder combines two arithmetic operands using the addition rules.

The same addition rules, and hence the same adders, are used for
both unsigned and 2's complement numbers.

An adder can perform subtraction as the addition of the minuend and
the complemented subtrahend.

A subtractor can also be built to perform subtraction directly.

An ALU (Arithmetic and Logic Unit) performs addition, subtraction,
and other logical operations.

6. Combinational Practices
- Adders, Subtractors and ALUs (2) -

= The simplest adder, called a half adder, adds two 1-bit operands X

and Y, producing a 2-bit sum.

= The sum can range from 0 to 2, which requires two bits to express.
= The low-order bit of the sum may be named HS (half sum).

= The high-order bit of the sum may be named CO (carry out).

= The following equations can be written:

HS=XA Y=XY + XY
CO=XY

« To add operands with more than one bit, carries between bit

positions must be provided.

= The building block for this operationis

= The following equations can be written:

6. Combinational Practices
- Adders, Subtractors and ALUs (3) -

b

called a full adder. aiN

Besides the addend-bit inputs X and Y,
a full adder has a carry-bit input, CIN.

= The sum of the 3 bits can range from 0

to 3, which can still be expressed with
just two output bits, S and COUT.

D_.

o

S =XAYACN =
COUT = X-Y + X-CIN + Y-CIN

B

fLill acder * 4,
¥ v
S_
¥ -] COUT CIN |e—
CIN - COUT —
3

'

6. Combinational Practices
- Adders, Subtractors and ALUs (4) -

handles one bit.

J,E

¥3

|

X

COUT GIN

3

b

i

¥z

|

;

x

b

2 {couT G

5

;

¥

|

%

l

¥

|

« Two binary words, each with n bits, can be added using a ripple adder.
« Aripple adder is a cascade of n full-adders stages, each of which

:

X

b

CaAUT GIN

3

X

b

! lcouT M

3

1

!

= The carry input to the least significant bit (c,) Is usually set to 0.

= The carry output of each full adder is connected to the carry input of
the next most significant full adder.

6. Combinational Practices
- Adders, Subtractors and ALUs (5) -

= The binary subtraction operation is analogous to binary addition.

= A full subtractor has inputs X (minuend), Y (subtrahend) and BIN
(borrow in) and outputs D (difference) and BOUT (borrow out).

= The following equations can be written:

D =XAYABIN
BOUT= X"Y + X-BIN + Y-BIN

= These equations are similar to the equations for a full adder.

D =XAYABIN
BOUT= XY’ + X-BIN' + Y"-BIN'

= A full subtractor can be built from a full adder. X-Y = X+Y'+1

b L

6. Combinational Practices
- Adders, Subtractors and ALUs (6) -

l

l

|

l

x hi x b
filladdr full adractor
- COUT GIW fe——ro =— BOUT BN |e—ro
5 o
Xn| ¥ ¥nz R
r % I I:I E
x b x L)
b Lo b Loz
n=— BOUT BN O=— BOUT BIN re——
()
Aoy Az

L4

X Y

=—{¥EAUT BIN [D=—
D

f

L ¥o
r %
x b
b L, b L

ses m— 0 BOUT EIN fya———m— 1

o

f

d;

6. Combinational Practices
- Adders, Subtractors and ALUs (7) -

An ALU is a combinational circuit that can perform Mx181
several arithmetic and logical operations on a pair — &0

of b-bit operands. i
The operation to be performed is specified by a set — &3

of function-select inputs. v :;'m AE
Typical MSI ALUs have 4-bit operands and three to =
five function-select inputs, allowing up to 32 MR
different functions to be performed. f_‘? -
A 74x181 IC has one 4-bit ALU. B2

The operation performed by the 74x181 Is selected :; mqu

* Tl

T =TT

by the M and S3-S0 inputs.

6. Combinational Practices
- Adders, Subtractors and ALUs (8) -

np ks Function
53 52 =1 S0 M=0 [arithmetic] M =1 [legic)
0 0 0 0 F=A minus 1 plus CIM F=A"
0 n n 1 F=#A-E minus 1 plus CIN F=A"+E"
n n 1 0 F=A-E minus 1 plusCIN F=A"+E
0 0 1 1 F=1111 plus CIM F=1111
0 1 0 1] F=AplusiA+E"plus CIM F=A" B
0 1 0 1 F=#A-Eplus (A +E" plus CIM F.=Bf
] 1 1 0 F=A minus Eminus 1 plusCIM F=a& B
n 1 1 1 F=A+E" plus CIN F=A+E"
1 n n 0 F=AplusiA+E)plus CIN F=A"E
1 0 0 1 F=AplusB plus CIM F=AtE
i 0 1 1] F=.I’|-E"plu=|;.l’|+E;|pIu=E-II"-l F=E
1 0 1 1 F=A+E plus CIM F=A+E
1 1 0 1] F=AplusA plus CIN F =0000
1 1 o 1 F=A-EBplus A plus CIN F=A E
1 1 1 0 F=A-E plusA plusCIN F=A-B
1 1 1 1 F=AplusCIN F=A

6. Combinational Practices
- Adders, Subtractors and ALUs (9) -

library IEEE;
use IEEE.std logic 1164.all;
use IEEE.std logic arith.all;

entity vaddshr is
port |
A, B, C, D: in SIGNED (7 downto 0);
SEL: in STD LOGIC;
5: out SIGNED (7 downto 0)
B
end vaddshr;

architecture vaddshr arch of vaddshr is
begin

S «<= A + B when SEL = '1' else C + D;
end vaddshr arch;

6. Combinational Practices

- Multipliers (1) -
The traditional algorithm to multiply binary numbers uses shifts and
adds to obtain the result.

However, it is not the only solution to implement a multiplier.

Given 2 n-bit inputs (X, Y), we can write a truth table that expresses
the 2n-bit product P=X"Y as a combinational function of X and Y.

Most approaches to combinational multipliers are based on the
traditional shift-and-add algorithm.

JoAT | YoXe | JoAs | YoXq | YoXs | JoAz | oX | Jodp

FIAT | & | a5 | &y | g | A | A | A&

FaXy | &g | aAs | Ay | sy | A | ax | as

Jokt | Yo% | Yoo | YoXe | Y53 | YoXe | Yokl | 5D

JeAT | VeAR | VeA | VeRy | YeA | VeA | VAT | YEED

JTAT | Yeds | ViAs | YeAy | YrAa | YAz | A | A
1 |

Ps|lPpulPa|Pe|lPulPu | | Bl || ||| 2| R

6. Combinational Practices

- Multipliers (2) -

'1:-| |-l3"c-| |*1L'-:|| |-L|.l-:-| |-*ul'-:-|

\Il |.-.-:Il |-r.\]l [5 |
0y iy iy 0

'

GG

= o
2 | =
el ||z
=
. —
= ==
= o
= Sl
&= =
= =
W -t
] 1=
|_ =

+
Vb] | Wik
¥ 1

L

2| |

| =

'-'-L"Jll—l |-'-':<."1Tl | \':J."l\l—l [-'fl.."al |-'-'||.||
1 1 1

L

=
|

;

l |1ﬂ |

o |-

21
R !

FJ
I YR TR, A

+H+|—-|+|--|+

L H

= & =t
] Ll r— | — Ll L — t
£ =y o = 3 -
£ 2™ = . 2™ =
L~ | Sl |~ | il L~ | Bl
=1 H = = H = L

n ¥y |

BE

L R R

¥ | |

|

e e e e e

N
= = L —
= -]
£ - -
H:. i H.. .

B

L]

ettt

Il ol -l ol

ps| [l (] [me] Lo (o] [&] [&] [e] [a] [&] [a] (&) [#] [a] [&]

6. Combinational Practices
- Multipliers (3) -

library IEEE;
use IEEE.std logic 1164.all;
use IEEE.std _logic_arith.all;

entity vmul8x8i is
port
X: in UNSIGNED (7 downto 0) ;
Y: in UNSIGNED (7 downtoc 0) ;
P: out UNSIGNED (15 downto 0)
end vmul8x8i ;

architecture vmulgx8i arch of vmul8x8i is
kegin

P <= X * ¥;
end vmul8x8i arch;

