Sistemas Digitais |
LESI - 2° ano

Lesson 5 - VHDL

Prof. Jodo Miguel Fernandes
(m guel @i . um nho. pt)

Dept. Informatica

UNIVERSIDADE DO MINHO
ESCOLA DE ENGENHARIA

5. VHDL

- Introduction -

= VHDL was developed, in the mid-1980s, by DoD and IEEE.
= VHDL stands for VHSIC Hardware Description Language;
VHSIC stands for Very High Speed Integrated Circuit.
= VHDL has the following features:
- Designs may be decomposed hierarchically.
- Each design element has both an interface and a behavioural
specification.
- Behavioural specifications can use either an algorithm or a structure to
define the element's operation.
- Concurrency, timing, and clocking can all be modelled.
- The logical operation and timing behaviour of a design can be simulated.

5. VHDL

- Design flow -

= VHDL started out as a documentation and modelling language,
allowing the behaviour of designs to be specified and simulated.

= Synthesis tools are also commercially available. A synthesis tool can
create logic-circuit structures directly from VHDL specifications.

A A,) bt uchy' ' o o). o i | wedsic
A | biccx cmgra [warricwr

< o g | g N
4 i i PLCS T waricace

5. VHDL

- Entities and Architectures (1) -

= VHDL was designed with the principles of structured programming.

= Pascal and Ada influenced the design of VHDL.

= Aninterface defines the boundaries of a hardware module, while
hiding its internal details.

= A VHDL entity is a declaration of a
module’s inputs and outputs.

= A VHDL architecture is a detailed
description of the module’s internal
structure or behaviour.

5. VHDL

- Entities and Architectures (2) -

An architecture may use
other entities.

A high-level architecture
may use a lower-level -
entity multiple times. | E— |
Multiple top-level L
architectures may use the
same lower-level entity. ;
This forms the basis for ” | i[_ - I‘

hierarchical system design.

= Inthe text file of a VHDL program, the entity

5. VHDL

- Entities and Architectures (3) -

declaration and the architecture definition are ;"-2-2===r=m--
separated.

amt ity Crhiban im
part [¥.Tr im BIT:

E: sk BETI:
#md Imibit et iy

architecturs Inkiblt_acch of Irhlbit im
mgir
H

* ke B0l mnd T whaw (E, i
e L O A I - o e v :

= The language is not case sensitive.
= Comments begin with 2 hyphens (--) and finish at the end of the line.
= VHDL defines many reserved words (port i s, i n, out, begi n,

end,entity,architecture,if,case,..).

5. VHDL

- Entity declaration syntax -

= Syntax of an entity declaration:

prrrrp—————
R T AT e ey
dwel-area | sk dignel o,

ngwetowees e pgm-npe| |
Hrd gurrp Ay

= mode specifies the signal direction:
- i n:input to the entity
- out : output of the entity
- buf f er: output of the entity (value can be read inside the architecture)
- i nout : input and output of the entity.

= signal-type is a built-in or user-defined signal type.

5. VHDL

- Architecture definition syntax -

= Syntax of an architecture definition:

mrrk Lk me v PRI ALY md P R L

[Sr——
! i et e
[] B
Ewvian s
[EEE S —
et e A

negan
o r—

e o
amd o

= The declarations can appear in any order.

= In signal declarations, internal signals to the architecture are defined:
signal signal-nanes : signal-type;

5. VHDL

- Types (1) -

= All signals, variables, and constants must have an associated type.

= Atype specifies the set of valid values for the object and also the
operators that can be appliedit b ADT.

= VHDL is a strongly typed language.
= VHDL has the following pre-defined types:

ol
blr_wectac

« integer includes the range -2 147 483 647 through +2 147 483 647.

= bool ean has two values, true and false.
- charact er includes the characters in the ISO 8-hit character set.

5. VHDL

- Types (2) -

= Built-in operators for i nt eger and bool ean types.

Lategar Sperene P ——

v akERay ared AND
b ec A

+ mabigiasan —
? domnn mx MR
mod o iodrisan sor Embagny OR
wwm R0k ool e wrme Exchave WOR
abr bl e net eorpkrosssen
*4 ppowmiEon

5. VHDL

- Types (3) -

= User-defined types are common in VHDL programs.
= Enumerated types are defined by listing the allowed values.

cyps SCO_LLGELT im |

ki e a1 TN L& TS T Lo Aad, il Yuinltialiced
Skl e TP N L AW T oL ! Feocing Takagen
'Y, - mealig D
ruresd par PONOEETANEY | T SNAY 1w e LF 4 -— Feairg 1
— High Inpedance
— Haa InEraim
Hrmk [
Hawh, 1

Dan'd wan

ST0_LOGID Lw cewolwwd STD_ULDGIE

= type traffic_light is (reset, stop, start, go);
= subtype bitnumis integer range 31 downto O;
= constant BUS_SIZE: integer := 32;

5. VHDL

- Types (4) -

= Array types are also user-defined.

©FFS THE-AEY A8 arrapiEve to end af slmerppe

i (- A3 R A CET dawvia snd| o aleremrge;

e (A am meeap AR IR | a b He LI

Epe (RE-SEE 10 RCrpREREdRpE Tange # ba evl| o obvesinge;

LY ipr-mer Ly arcoydewrrge cangs mar i down b o) af eleeron-an

type metnlp_aserd im ercap 1112 131 of Antegecs
Lype bie is sewsy |7 dewsis) i 3TO_LomIC,
seawlorl WAL LEM, iniepec 1= 20

Lype sucd B ACoeg (RCRD_LEW-1 doenie) of ¥m_tomac;
SOnELENL WIS KEEN: nlegec D= 0

Cype peg_flle im avray 1L co wum_mEsl of wocd,

TVpS ECATSCIUNT AN ATCRY (Ceafilo Lighe_rratel of LR1sger;

5. VHDL

- Types (5) -

= Array literals can be specified by listing the values in parentheses:
xyz :=(’1,'1,’0,'1,'1,'0,'0,'1");
abc := (0=>'0", 3=>'0", 9=>'0", others=>"1");
= Strings can be used for STD_LOGIC arrays:
Xyz := "11011001";
abc := "0110111110111111";
= Array slices can be specified:
xyz(2 to 4) abc(9 downto 0)
= Arrays and array elements can be combined with the concatenation
operator (&):
"0’ & 1’ & 12" isequivalentto *0112".
B(6 downto 0)&B(7) represents a 1-bit left rotate of the B array.

5. VHDL

- Functions and Procedures (1) -

= Afunction accepts a set of arguments and returns a result.
= The arguments and the result must have a type.
= Syntax of a function definition.

= Tmbsdaik_aswhi i Crdibak am

ey © g ey T & WutHat o, W. Blil esroem blt le
- bagin
Fymbaaan © ey vE B R B rwam &
1 ERLUCL ALY LS #law cwiucn "1°
T ety o v wud LE;
S —k Bk ek
A LA B
Srrraen degle o bsgLr
prcedirs Sginor % sm Beribing (8. Tir

LS od Inchibit_sechis

aLn
St i

e gere e
v [l o sowe

5. VHDL

- Functions and Procedures (2) -

= Itis often necessary to convert a signal from one type to another.
Assume that the following unconstrained array type is defined:

type STD_LOG C_VECTOR is array (natural range <>) of STD_LOG C;
Conversion from STD_LOG C_VECTORINto | NTEGER.

fonction COME_TRTRGRRE 0 SO0 _MAGDY_IRETORI retore [NTEEER im
wavisiale AERILT, TuTEIEN,

ratoan FEALLE;
el COME_IHTESDR,;

5. VHDL

- Functions and Procedures (3) -

= A procedure is similar to a function, but it does not return a result.

= Whereas a function call can be used in the place of an expression, a
procedure call can be used in the place of a statement.

= Procedures allow their arguments to be specified with mode out or
i nout , so it is possible for a procedure to “return” a result.

5. VHDL

- Libraries and Packages (1) -

= Alibrary is a place where the VHDL compiler stores information
about a particular design project.

= For any design, the compiler creates and uses the wor k library.

= Adesign may have multiple files, each containing different units.

= When afile is compiled, the results are placed in the wor k library.

= Not all information needed in a design must be in the wor k library. A
designer may rely on common definitions or functions across a family
of different projects.

= A project can refer libraries containing shared definitions:

library ieee;

5. VHDL

- Libraries and Packages (2) -

Specifying a library gives access to any
previously analysed entities and architectures, == = rame o=

ey X

but does not give access to types and the like. 2oy ieie

A package is a file with definitions of objects e dhetueiia
(signals, types, constants, functions, procedures, component [T —

declarations) to be used by other programs. R v —
. frpr Ao

A design can use a package: s e o

use ieee.std_|logic_1164.all;]

e pachige e

Within the ieee library, the definitions are on
file std_logic_1164.

5. VHDL

- Structural Design (1) -

The body of an architecture is a series of concurrent statements.

Each concurrent statement executes simultaneously with the other
concurrent statements in the same architecture body.

Concurrent statements are necessary to simulate the behaviour of
hardware.

The most basic concurrent statement is the component statement.

Imtwic comporantmmr pertmap Oepell, npwd, o Egaai;

L : v AL iy D A (et i | s s e | oHE A

conponent - nare is the name of a previously defined entity.
One instance of the entity is created for each component statement.

5. VHDL

- Structural Design (2) -

= Before being instantiated, a component must be declared in the
conponent decl ar at i on in the architecture’s definition.

= A component declaration is essentially the same as the port
declaration part of an entity declaration.

mampernar gl era e,
port legantemar - e gk gpe:
ERANML o S Sl P

mpaalamres | s roeed g
md cooporant)

= The components used in an architecture may be those previously
defined as part of a design, or they may be part of a library.

5. VHDL

- Structural Design (3) -

Fr—
use T08E, rid_Logic 1163, a11

wntly peloe Le

KIC_WECTON i dowpta 01 &) sk BT LOGIC

magoal HIL_HE. B3k gl dl,
mwmparanh IV i (1
CONpIrstL MIDE por
wrrt BHDS por
wat S04 pact

ek

#0d Danpn L,

© end compane,
end cEmpmant;

(LTS TR AR |
[LT8]

map W13, WL,
T mep IRIL HO, HIL
avd prinel_scch;

]

5. VHDL

- Structural Design (4) -

= An architecture that uses components is a structural description, since
it describes the structure of signals and entities that realise the entity.
= The gener at e statement allows repetitive structures to be created.
q:-'1|-k|.t--m¢--;p--|
AT S e

wod gensceie)

LLbrwcy - DEEE;

e TERE. mrd_Legie 1 LEd, all;
mrdiby el oom

ped [Bi i ECD_LOCT

Ti msh RTT_LOCES

mrd L
acchitectows Lwel_arch of Lrvl im
compersut INY peci |10 Le 810 LORC, Ocout 3T0 LOEC] . sod compenent

o Tikaly

5. VHDL

- Structural Design (5) -

Generic constants can be defined in an entity declaration.

LIl mwem L
FEnarLe (e m——
PRI mAr - o

bt s SRR
pert rpest sy - ool pgeane
rped momey o pgesn;

spenmey o rwok swmaloel
md eripipaser,

Each constant can be used within the respective architecture and the
value is deferred until the entity is instantiated in another architecture
using a component statement.

Within the component statement, values are assigned to the generic

constants using a generi ¢ map clause.

5. VHDL

- Structural Design (6) -

Library LEER,
uns TG00 red_logie_LL&#.all;
wataiy bupime in
pnecio (WIOCHD pomitived .
port | Ko in S00_COGIq_VWECTON (WD 1 despie Ol
¥o oaut OTR_LIGDG_WOILOR (MICTR-L Sesnito 02 Iy
wud iy

architactore kmpreoaco af bl im
[8 pact ol dn STO_WEIGC: G mrt STOLOGICE; end cemporent |

ared gk
wnd bmdan_muwh;

5. VHDL

- Structural Design (7) -

Libzory DL
wae 0. ot d_Log Lo 4. 613

bk bameny_searmls o
part IWN: Ln 8TD LACIO_VECDON IT desmiic

WITE: ot DTO_LSGLC YECTOR 7 dosi
IMLE: in SIO_LWRDC_WVECES 18 downta DI
TR 16 st G0
mid. wECTm. 13l deereia DI,
WD) ok ATO_LOGIO_WECTOM 121 deanno 0] 1)

B bl saanple:

o in_mn sk wd bemam sl an

TOR (MLIOM-] dsyro 91
FEETOA IOTE-1 duwaaka B3 0,

selrve gemscic wap (RIDTG=81 poct map (IMB, GUCRI;
¥ JENarLE BAR 18D peet map &, OUTLEL
IDTH=r A1 posk Eep T3 ol

i gEIELLO BAR
e b s _ereh

5. VHDL

- Dataflow Design (1) -

= Other concurrent statements allow circuits to be described in
terms of the flow of data and operations on it within the circuit.

= This gives origin to the dataflow description style.
= Syntax of concurrent signal assignments statements.

npwiroms o= apremon

npwlroex s copremen whan dockne g mmane slaw
ragrrarpr shan beras e @ L

arpre o when peckarogremm el
SRR

5. VHDL

- Dataflow Design (2) -

e ————————————
migral WAL BU. MIL_WZL _HL. H2L ML W0, MZ_W1L_WO: STE_LOEIC:

began

o ones Wi ared Wil ;

Foam WAL MO o WO WL _HD & HEL
el pemrd s ahs

M WE_ROL_HD;

S —
Mi. mizwd_ai, wE_nin Wb, sTo_lams;

Wi M e W ML WD ar

LN HA N

5. VHDL

- Dataflow Design (3) -

= Another concurrent statement is the selected signal assignment,
which is similar to a typical CASE constructor.
= Syntax of selected signal assignments.
ey e g——,
o8 SEE Ot M CASHORE,.
et pdar when chobner,

e apdar when CAET,

arckitaciee primed arch of poiee Lw brabuse promel_svsh sl pEamr s

with (OHE_IRTEGRRIA] eeleat
Foom ‘17 shan 112 |2 1%17)13] 13
0 b b g
siLlTy| and poimed_awch

5. VHDL

- Behavioural Design (1) -

The main behavioural construct is the process which is a
collection of sequential statements that executes in parallel with
other concurrent statements and processes.

A process simulates in zero time.
A VHDL process is a concurrent statement, with the syntax:

Pead s | AT, SO L RO A
R
venitdr docreimar
comsa Fickeaticns
o dafrerom
ety A
[
]

et b
arot prarses,

5. VHDL

- Behavioural Design (2) -

= Aprocess can not declare signals, only variables, which are used to
keep track of the process state.

= The syntax for defining a variable is:
vari abl e vari abl e-nanmes : vari abl e-type;

= A VHDL process is either running or suspended.

= The list of signals in the process definition (sensitivity list) determines
when the process runs.

= Aprocess is initially suspended. When a sensitivity list's signal changes
value, the process resumes, starting at the 1st statement until the end.

= Ifany signal in the sensitivity list change value as a result of running the
process, it runs again.

5. VHDL

- Behavioural Design (3) -

= This continues until the process runs without any of these signals
changing value.

= In simulation, this happens in zero simulation time.

= Upon resumption, a properly written process will suspend after a couple
of runs.

= ltis possible to write an incorrect process that never suspends.

= Consider a process with just one sequential statement “X <= not X;"
and a sensitivity list of “(X) ".

= Since X changes on every pass, the process will run forever in zero
simulated time.

= In practice, simulators can detect such behaviour, to end the simulation.

5. VHDL

- Behavioural Design (4) -

= The sequential signal assignment statement has the same syntax as
the concurrent version (but it occurs within the body of a process):
si gnal - name <= expressi on;

= The variable assignment statement has the following syntax:
vari abl e- name : = expression;

Arshibmebaee primaf_sreh of promad e
RagLn
pE e]
weriahle HIL_HE, SIL_GOL_KI, KPL_HI_A, HI_WIl_K&. &6a_Lac1s

hagan
L = el WOl mad K12l
WOL_WML Kl c= red WOl aod nec HiZD ard Hill ¥
WH_Wl_f o nee HiFr end Hild smd H
Mi_MAL_l e M1% eed et HELD wsd M1

F == HSL HE or WIL_WZL HL or WL _HL_ @ ec HI_HLL_@

#d pramsd_srah,

5. VHDL

- Behavioural Design (5) -

= Other sequential statements include popular constructs, such asii f,
case, | oop, for, and whi | e.

R ——y y——————— e p————
wnd ify el CHOEE = ¢ ST LR
LT deriasrgreseor 1 hen sgermiedrimonor wharn e el St el LRl
Ll oAy e 1 i DT wnd ceme)
s
i dorkmerpramor & o g rimn T far oheaqier 12 may Loap
wlan d Buadla il ol b e See I TR A T EARA LI LR
alrid el e Ehas prqerere e] :a:"'"'-ah'w-‘
= Lamp

v ady i Luaps

LT Soclean-Rpramor 1hel SgTolTIere e -

LEL Portaan SrpmeLAT 10 CAEERR TR | sy L Diassaparins Lo
el

SLal g brolan sy thes st s

g R0 L T Fyrrrer e

ai wred Lowg;

5. VHDL

- Behavioural Design (6) -

mrshibmriies primel_mres = proms o peimsl_arch of prams im
hegls

PTECEEEIKI

@ am 1
T me WI=IL as

11 12 me B uw "17
ny1 oe

{ pracear;

=
ard prinsT_acdhy

5. VHDL

- Behavioural Design (7) -

e _aneh wd pmamed e

verLable Wio JHCSEEN)
bl prlmsc kel

[
HE 1w oMW _THUEGE R M

Af MIWL or MI®E then rol
slas for L in ¥ te 23

brordacy cirar

if W mad 4= @ 10en
Prime e fmlme: smits
end if;
#d Leopr
sad LE;
if price then ¢ «= 'L'; slee r o= 'O sad LS

and prasess

wnd poinsd acchy

5. VHDL

- Time Dimension (1) -

= None of the previous examples deal with the time dimension of
circuit operation: everything happens in zero simulated time.

= VHDL has excellent facilities for modelling the time.

= VHDL allows a time delay to be specified by using the keyword
af t er in any signal-assignment statement.

= Z<="'1 after 4ns when X="1" else

‘0" after 3ns;

= This models a gate that has 4ns of delay on a 0-to-1 output
transition and only 3ns on a 1-to-0 transition.

= With these values, a VHDL simulator can predict the approximate
timing behaviour of a circuit.

- Time Dimension (2) -
Another way to invoke the time dimension is with wai t .

This sequential statement can be used to suspend a process for a
specified time period.
Awai t statement can be used to create simulated input waveforms

5. VHDL

- Simulation (1) -

Once we have a VHDL program whose syntax and semantics are
correct, a simulator can be used to observe its operation.

Simulator operation begin at simulation time of zero.

At this time, the simulator initialises all signals to a default value.
It also initialises any signals and variables for which initial values
have been explicitly declared.

Next, the simulator begins the execution of all processes (and
concurrent statements) in the design.

The simulator uses a time-hased event list and a signal-sensitivity
matrix to simulate the execution of all the processes.

5. VHDL

- Simulation (2) -

At simulation time zero, all processes are scheduled for execution.

One of them is selected and all of its sequential statements are
executed, including any looping behaviour that is specified.

When the execution of this process is completed, another one is
selected, and so on, until all processes have been executed.

This completes one simulation cycle.
During its execution, a process may assign new values to signals.

The new values are not assigned immediately. They are placed on
the event list and scheduled to become effective at a certain time.

5. VHDL

- Simulation (3) -

If the assignment has an explicit simulation time (af t er clause),
then it is scheduled on the event list to occur at that time.
Otherwise, it is supposed to occur “immediately”.

Itis actually scheduled to occur at the current simulation time plus
one delta delay.

The delta delay is an infinitesimally short time, such that the current
simulation time plus any number of delta delays still equals the
current simulation time.

The delta delay concept allows processes to execute multiple times
(if necessary) in zero simulated time.

After a simulation cycle completes, the event list is scanned for the
signals that change at the next earliest time on the list.

5. VHDL

- Simulation (4) -

This may be as little as one delta delay, or it may be a real delay, in
which case the simulation time is advanced.

In any case, the scheduled signal changes are made.
Some processes may be sensitive to the changing signals.

All the processes that are sensitive to a signal that just changed are
scheduled for execution in the next simulation cycle (begins now).

The simulator’s operation goes on indefinitely until the list is empty.
The event list mechanism makes it possible to simulate the
operation of concurrent processes in a uni-processor system.

The delta delay mechanism ensures correct operation even though
a set of processes may require multiple executions.

