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3. Boolean Algebra
- Introduction -

§ The success of computer technology is primarily based on simplicity of 
designing digital circuits and ease of their manufacture.

§ Digital circuits are composed of basic processing elements, called gates, 
and basic memory elements, called flip-flops. 

§ The simplicity in digital circuit design is due to the fact that input and 
output signals of each gate or flip-flop can assume only two values, 0 
and 1.

§ The changes in signal values are governed by laws of Boolean algebra.
§ The fact that Boolean algebra is finite and richer in properties than 

ordinary algebra leads to simple optimisation techniques for functions.
§ In order to learn techniques for design of digital circuits, we must 

understand the properties of Boolean algebra.



3. Boolean Algebra
- Binary Signals (1) -

§ Digital logic hides the analog world by mapping the infinite set of 
real values into 2 subsets (0 and 1).

§ A logic value, 0 or 1, is often called a binary digit (bit).
§ With n bits, 2n different entities are represented.
§ When using electronic circuits, digital designers often use the 

words “LOW” and “HIGH”, in place of “0” and “1”.
§ The assignment of 0 to LOW and 1 to HIGH is called positive 

logic. The opposite assignment is called negative logic.
§ Other technologies can be used to represent bits with physical 

states.



3. Boolean Algebra
- Binary Signals (2) -



3. Boolean Algebra
- Combinational vs. Sequential Systems -

§ A combinational logic system is one whose outputs depend only 
on its current inputs.

§ A combinational system can be described by a truth table.
§ The outputs of a sequential logic circuit depend not only on the 

current inputs but also on the past sequence of inputs ⇒ memory.
§ A sequential system can be described by a state table.
§ A combinational system may contain any number of logic gates 

but no feedback loops.
§ A feedback loop is a signal path of a circuit that allows the output 

of a gate to propagate back to the input of that same gate.
§ Feedback loops generally create sequential circuit behaviour.



3. Boolean Algebra
- Gates (1) -

§ Three basic gates (AND, OR, NOT) are sufficient to build any 
combinational digital logic system. They form a complete set.

§ The symbols and truth tables for AND and OR may be extended to 
gates with any number of inputs.

§ The bubble on the inverter output denotes “inverting” behaviour.



3. Boolean Algebra
- Gates (2) -

§ Two more logic functions are obtained by combining NOT with an 
AND or OR function in a single gate.

§ The symbols and truth tables for NAND and NOR may also be 
extended to gates with any number of inputs.



3. Boolean Algebra 
- Switching Algebra -

§ Using this algebra, one can formulate propositions that are true or false, 
combine them to make new propositions and determine if the new 
propositions are true or false.

§ We use a symbolic variable (ex. X) to represent the condition of a logic 
signal, which is in one of two possible values ( “0” or “1”).

§ In 1854, G. Boole (1815-1865) introduced the formalism that 
we use for the systematic treatment of logic which is now 
called Boolean Algebra.

§ In 1938, C. Shannon (1916-2001) applied this algebra to 
prove that the properties of electrical switching circuits can be 
represented by a 2-valued Boolean Algebra, which is called 
Switching Algebra.



3. Boolean Algebra 
- Axioms (1) -

§ The axioms (or postulates) of a mathematical system are a 
minimal set of basic definitions that we assume to be true.

§ The first axioms embody the digital abstraction:
(A1) X=0 if X≠1 (A1’) X=1 if X≠0

§ We stated these axioms as a pair, the only difference being the 
interchange of the symbols 0 and 1.

§ This applies to all the axioms and is the basis of duality.
§ The next axioms embody the complement notation:

(A2) If X=0, then X’=1 (A2’) If X=1, then X’=0

§ We use a prime (’) to denote an inverter’s function.



3. Boolean Algebra
- Axioms (2) -

§ The last three pairs of axioms state the formal definitions of the 
AND (logical multiplication) and OR (logical addition) operations:
(A3) 0·0 = 0 (A3’) 1+1 = 1
(A4) 1·1 = 1 (A4’) 0+0 = 0
(A5) 0·1 = 1·0 = 0 (A5’) 1+0 = 0+1 = 1

§ By convention, in a logic expression involving both multiplication 
and addition, multiplication has precedence.

§ The expression X·Y+Y·Z’ is equivalent to (X·Y) + (Y·Z’).
§ The axioms (A1-A5, A1’-A5’) completely define Boolean algebra.



3. Boolean Algebra 
- Theorems (1) -

§ Theorems are statements, known to be true, that allow us to 
manipulate algebraic expressions to have simpler analysis or 
more efficient synthesis of the corresponding circuits.

§ Theorems involving a single variable:
(T1) X+0 = X (T1’) X·1 = X (Identities)
(T2) X+1 = 1 (T2’) X·0 = 0 (Null elements)
(T3) X+X = X (T3’) X·X = X (Idempotency)
(T4) (X’)’ = X (Involution)
(T5) X+X’ = 1 (T5’) X·X’ = 0 (Complements)

§ These theorems can be proved to be true. Let us prove T1:
[X=0]  0+0=0 (true, according to A4’)
[X=1]  1+0=1 (true, according to A5’)



3. Boolean Algebra 
- Theorems (2) -

§ Theorems involving two or three variables:
(T6) X+Y = Y+X (T6’) X·Y = Y·X (Commutativity)
(T7) (X+Y)+Z = X+(Y+Z) (T7’) (X·Y)·Z = X·(Y·Z) (Associativity)
(T8) X·Y+X·Z = X·(Y+Z) (T8’) (X+Y)·(X+Z) = X+Y·Z (Distributivity)
(T9) X+X·Y = X (T9’) X·(X+Y) = X (Covering)
(T10) X·Y+X·Y’ = X (T10’) (X+Y)·(X+Y’) = X (Combining)
(T11) X·Y+X’·Z+Y·Z = X·Y+X’·Z (Consensus)
(T11’) (X+Y)·(X’+Z)·(Y+Z) = (X+Y)·(X’+Z)

§ Attention to theorem T8’ which is not true for integers and reals.
§ T9 and T10 are used in the minimisation of logic functions.



3. Boolean Algebra 
- Theorems (3) -

§ Theorems involving n variables:
(T12) X+X+ ... +X = X
(T12’) X·X· ... ·X = X

(T13) (X1·X2· ... ·Xn)’ = X1’+X2’+ ... +Xn’
(T13’) (X1+X2+ ... +Xn)’ = X1’·X2’· ... ·Xn’

(T14) [F(X1,X2,...,Xn,+,·)]’ = F(X1’,X2’,...,Xn’,·,+) 

(T15) F(X1,X2,...,Xn) = X1·F(1,X2,...,Xn) + X1’·F(0,X2,...,Xn)
(T15’) F(X1,X2,...,Xn) = [X1+F(0,X2,...,Xn)] · [X1’+F(1,X2,...,Xn)]

Generalised Idempotency

DeMorgan’s theorems

Generalised DeMorgan’s th.

Shannon’s 
expansion 
theorems

§ Several important theorems are true for an arbitrary number of variables.



3. Boolean Algebra 
- Theorems (4) -

§ DeMorgan’s theorem (T13 and T13’) for n=2:
(X·Y)’ = X’+Y’
(X+Y)’ = X’·Y’

§ DeMorgan’s theorem gives a procedure for 
complementing a logic function.

§ DeMorgan's theorem can be used to convert 
AND/OR expressions to OR/AND expressions.

Augustus De Morgan 
(1806-1871)

§ Example:
Z = A’ B’ C  +  A’ B C  +  A B’ C  +  A B C’
Z’ = (A + B + C’) · (A + B’ + C’) · (A’ + B + C’) · (A’ + B’ + C)



3. Boolean Algebra 
- Theorems (5) -

Equivalent gates according to DeMorgan’s theorem



3. Boolean Algebra 
- Theorems (6) -

§ Since Boolean algebra has only two elements, we can also show 
the validity of these theorems by using truth tables.

§ To do this, a truth table is built for each side of the equation that 
appears in the theorem.

X  
0 
0 
1 
1 

Y  
0 
1 
0 
1 

X  
1 
1 
0 
0 

Y  
1 
0 
1 
0 

X + Y  
1 
0 
0 
0 

X•Y  
1 
0 
0 
0 

X  
0 
0 
1 
1 

Y  
0 
1 
0 
1 

X  
1 
1 
0 
0 

Y  
1 
0 
1 
0 

X + Y  
1 
1 
1 
0 

X•Y  
1 
1 
1 
0 

§ Then both sides of the equation are 
checked to see if they yield identical 
results for all the combinations of variable 
values.

§ Let us prove DeMorgan’s theorem (T13 
and T13’) for n=2:

(X+Y)’ = X’·Y’ (X+Y)’ = X’·Y’



3. Boolean Algebra 
- Duality (1) -

§ Theorems were presented in pairs.
§ The prime version of a theorem is obtained from the unprimed version 

by swapping “0” and “1”, and “·” and “+”. 
§ Principle of Duality: Any theorem or identity in Boolean algebra remains 

true if 0 and 1 are swapped and · and + are swapped throughout.
§ Duality is important because it doubles the usefulness of everything 

about Boolean algebra and manipulation of logic functions.
§ The dual of a logic expression is the same expression with + and · 

swapped: FD(X1,X2,...,Xn,+,·,’) = F(X1,X2,...,Xn,·,+,’).
§ Do not confuse duality with DeMorgan’s theorems!

[F(X1,X2,...,Xn,+,·)]’ = F(X1’,X2’,...,Xn’,·,+)
[F(X1,X2,...,Xn)]’ = FD(X1’,X2’,...,Xn’)



3. Boolean Algebra 
- Duality (2) -

Positive-logic Negative-logicElectric function



3. Boolean Algebra 
- Duality (3) -

§ Negative-logic

§ Positive-logic



3. Boolean Algebra 
- Standard Representation (1) -

§ The most basic representation of a logic function is a truth table.
§ A truth table lists the output of the circuit for every possible input 

combination.
§ There are 2n rows in a truth table for an n-variable function. 

§ There are 28 (8=23) different logic functions for 3 variables.



3. Boolean Algebra 
- Standard Representation (2) -

§ Truth tables can be converted to algebraic expressions.
§ A literal is a variable or the complement of a variable. Ex: X, Y, X’.
§ A product term is a single literal or a logical product of two or more 

literals. Ex: Z’, W·X·Y, W·X’·Y’.
§ A sum-of-products (SOP) is a logical sum of product terms. 

Ex: Z’ + W·X·Y.
§ A sum term is a single literal or a logical sum of two or more 

literals. Ex: Z’, W+X+Y, W+X’+Y’.
§ A product-of-sums (POS) is a logical product of sum terms. 

Ex: Z’ · (W+X+Y).



3. Boolean Algebra 
- Standard Representation (3) -

§ A normal term is a product or sum term in which no variable 
appears more than once. 
Examples (non-normal terms): W·X·X’·Z’, W’+Y’+Z+W’.

§ A n-variable minterm is a normal product term with n literals. 
Examples (with 4 variables): W·X·Y·Z’, W’·X’·Y·Z.

§ A n-variable maxterm is a normal sum term with n literals. 
Examples (with 4 variables): W+X+Y+Z’, W’+X’+Y+Z.

§ There is a correspondence between the truth table and minterms
and maxterms.

§ A minterm is a product term that is 1 in one row of the truth table.
§ A maxterm is a sum term that is 0 in one row of the truth table.



3. Boolean Algebra 
- Standard Representation (4) -

Minterms and maxterms for a 3-variable function F(X,Y,Z)



3. Boolean Algebra 
- Standard Representation (5) -

§ An n-variable minterm can be represented by an n-bit integer (the 
minterm number).

§ In minterm i, a variable appears complemented if the respective bit in 
the binary representation of i is 0; otherwise it is uncomplemented.

§ For example, row 5 (101) is related to minterm X·Y’·Z.
§ In maxterm i, a variable appears complemented if the corresponding 

bit in the binary representation of i is 1; otherwise it is unprimed.
§ For example, row 5 (101) is related to maxterm X’+Y+Z’.
§ To specify the minterms and maxterms, it is mandatory to know the 

number of variables in the function and their order.



3. Boolean Algebra 
- Standard Representation (6) -

§ From the table:
F = ∑ X,Y,Z (0,3,4,6,7) = X’·Y’·Z’ + X’·Y·Z + X·Y’·Z’ + X·Y·Z’ + X·Y·Z

§ The notation ∑ X,Y,Z (0,3,4,6,7) is a minterm list and means the sum 
of minterms 0,3,4,6, and 7, with variables X, Y, and Z.

§ The minterm list is also known as the on-set for the logic function.

§ Based on the correspondence between the truth 
table and the minterms, an algebraic 
representation of a logic function can be created.

§ The canonical sum of a logic function is a sum of 
the minterms corresponding to truth table rows 
for which the function is 1.



3. Boolean Algebra 
- Standard Representation (7) -

§ From the table:
F = ∏ X,Y,Z (1,2,5) = (X+Y+Z’) · (X+Y’+Z) · (X’+Y+Z’)

§ The notation ∏ X,Y,Z (1,2,5) is a maxterm list and means the product 
of maxterms 1,2, and 5, with variables X, Y, and Z.

§ The maxterm list is also known as the off-set for the logic function.

§ Based on the correspondence between the truth 
table and the maxterms, an algebraic 
representation of a logic function can be created.

§ The canonical product of a function is a product 
of the maxterms corresponding to input 
combinations for which the function is 0.



3. Boolean Algebra 
- Standard Representation (8) -

§ It is easy to convert between a minterm list and a maxterm list.
§ For a function of n variables, the minterms and maxterms are in the 

set {0, 1, …, 2n-1}. 
§ A minterm or maxterm list contains a subset of these numbers.
§ To switch between the lists, one takes the set complement.
§ Examples:

∑ A,B,C (0,1,2,3) = ∏ A,B,C (4,5,6,7) 
∑ X,Y (1) = ∏ X,Y (0,2,3) 
∑ W,X,Y,Z (1,2,3,5,8,12,13) = ∏ W,X,Y,Z (0,4,6,7,9,10,11,14,15) 



3. Boolean Algebra 
- Standard Representation (9) -

§ We have learned 5 possible representations for a combinational logic 
function.

– A truth table;
– An algebraic sum of minterms (the canonical sum);

– A minterm list, using the ∑∑ notation;
– An algebraic product of maxterms (the canonical product);

– A maxterm list, using the ∏∏ notation;

§ Each one of these representations specifies exactly the same 
information.

§ Given any of them, we can derive the other four using a simple 
mechanical process.



3. Boolean Algebra 
- Examples (1) -

§ Ex.1: Let F = X·Y + X·Y’·Z + X’·Y·Z. Derive the expression for F’ in
the product of sums form.

§ F’ = (XY + XY’Z + X’YZ)’
= (XY)’·(XY’Z)’·(X’YZ)’
= (X’+Y’)(X’+Y+Z’)(X+Y’+Z’)

§ Ex.2: Express the function G(X,Y,Z) = X + Y’·Z as a sum of minterms.
§ G = X + Y·Z

= X·(Y+Y’)·(Z+Z’) + Y·Z·(X+X’)
= XYZ + XYZ’ + XY’Z + XY’Z’ + XYZ + X’YZ
= X’YZ + XY’Z’ + XY’Z + XYZ’+ XYZ

= ∑ X,Y,Z (3,4,5,6,7) 



3. Boolean Algebra 
- Examples (2) -

§ Ex.3: Derive the product-of-maxterms form for H = X’·Y’ + X·Z.
§ H = X’Y’ + XZ

= (X’Y’+X)(X’Y’+Z)
= (X’+X)(Y’+X)(X’+Z)(Y’+Z)
= (X+Y’)(X’+Z)(Y’+Z)

§ Each OR term in the expression is missing one variable:
– X+Y’ = X+Y’+ZZ’ = (X+Y’+Z)(X+Y’+Z’)

– X’+Z = X’+Z+YY’ = (X’+Y+Z)(X’+Y’+Z)

– Y’+Z = Y’+Z+XX’ = (X+Y’+Z)(X’+Y’+Z)

§ Finally we combine these terms:
H = (X+Y’+Z)(X+Y’+Z’)(X’+Y+Z)(X’+Y’+Z)

∏ X,Y,Z (2,3,4,6) 



3. Boolean Algebra 
- Examples (3) -

§ Ex.4: Derive the product-of-maxterms form for H = X’·Y’ + X·Z.
X Y Z H
0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

§ From the table, we obtain:
H = ∏ X,Y,Z (2,3,4,6) 
H = ∑ X,Y,Z (0,1,5,7) 

§ Compare this solution with the 
solution of ex.3.

§ Ex.5: Derive a standard form with a reduced number of operators for 
J = XYZ + XYZ’ + XY’Z + X’YZ.

§ J = XYZ + XYZ’ + XYZ + XY’Z + XYZ + X’YZ
XY(Z+Z’) + X(Y+Y’)Z + (X+X’)YZ 
XY’+XZ+YZ


