
Current Architectures for Parallel
Processing

António Lira Fernandes
MICEI'0304

Universidade do Minho

Architectures for Parallel Processing

"With the development of new kinds of equipment of
greater capacity, and particularly of greater speed, it is
almost certain that new methods will have to be developed
in order to make the fullest use of this new equipment. It is
necessary not only to design machines for the
mathematics, but also to develop a new mathematics for
the machines."

Douglas Rayner Hartree, 1952

Outline

• Introduction
• Taxonomy
• Memory Models
• Bus/ Interconnected
• Programming Models
• Top500

Parallel Computing - What is it?

• Parallel computing is when a program uses concurrency
to either:
—decrease the runtime for the solution to a problem.
—Increase the size of the problem that can be solved.

• Parallel Computing gives you more performance to
throw at your problems.

Current Parallel Approaches
• Single computers – multiple processing elements

— tightly-coupled system (SMP & ccNUMA)

• Clusters
— loosely-coupled system

• Fusion of the two
— hybrid-coupled system (Super Clusters)

Taxonomy of Parallel Processor
Architectures (Flynn)

Four Architectures

SISD

SIMD

MIMD
(tightly
coupled)

MIMD
(loosely
coupled)IS = instruction stream DS = data stream

CU = control unit MU = memory unit
PU = processing unit LM = local memory
PE = processor element

Outline

• Introduction
• Taxonomy
• Memory Models

— Shared
— Distributed

• Bus/ Interconnected
• Programming Models
• Top500

Memory Models
• Distributed memory
• Shared-memory

— Uniform Memory Access (UMA)
— Non-Uniform Memory Access (NUMA)

– (distributed shared-memory)

UMA

NUMA

Memory Models
• Why NUMA architecture?

— UMA system bus gets saturated (if too much traffic)
— UMA crossbar gets too complex (too expensive)
— UMA architecture does not scale beyond a certain level

• Typical NUMA problems
— High synchronization costs (of subsystem interconnect)

— High memory access latencies (some times not)
— Might need memory sensitive strategies

– loose shared-memory advantage

Outline

• Introduction
• Taxonomy
• Memory Models

— Shared
— Distributed

• Bus/ Interconnected
• Programming Models
• Top500

Memory Models
• Interconnected “von Neumann” computers by Ethernet,

Myrinet, FDDI, ATM
• Distributed Memory, i.e. Summit Beowulf
• Heterogeneous mixture of processors
• Less Expensive
• LANs and WANs are also being used, but the

communication costs are higher.

Cluster

Clusters Beowulf
• First cluster - Beowulf was developed in 1994 by

Thomas Sterling and Don Becker, NASA researchers.
• Total performance: 60 Mflops.
• 16 nodos with the follow configuration:

— 486DX4 100MHz (performance: 4,5 Mflops);
— 256KB Cache;
— 16MB RAM;
— HD 540MB;
— Ethernet network.

NUMA vs. cluster computing

• NUMA can be viewed as a very tightly coupled form of
cluster computing.

• Using an cluster architecture a NUMA can be
implemented entirely in software

Outline

• Introduction
• Taxonomy
• Memory Models
• Bus/ Interconnected

—Bus
– Time shared or common bus
– Multiport memory
– Central control unit

—Interconnection

• Programming Models
• Top500

Time Shared Bus
• Simplest form
• Structure and interface similar to single

processor system
• Following features provided

—Arbitration - any module can be temporary master
—Time sharing - if one module has the bus, others

must wait and may have to suspend
• Now have multiple processors as well as

multiple I/O modules

Shared Bus Multiport Memory

• Direct independent access of memory modules
by each processor

• Logic required to resolve conflicts
• Little or no modification to processors or

modules required
• Advantages and Disadvantages...

Multiport Memory Diagram Outline

• Introduction
• Taxonomy
• Memory Models
• Bus/ Interconnected

—Bus
—Interconnection

– Static
– Dynamic

• Programming Models
• Top500

Static Interconnected
• Cube
• Mesh, Intel Paragon
• Tree, Thinking Machine CM-5

Dynamic Interconnected
• Paths are established as needed

—Bus based, SGI Power Challenge
—Crossbar
—Multistage Networks

Bus vs Network

João Luís Sobral 2002

The Hardware is in great shape

Tim Mattson

Outline

• Introduction
• Taxonomy
• Memory Models
• Bus/ Interconnected
• Programming Models

— Message-passing (PVM, MPI)
— Threading (OpenMP/threads)

• Top500

Programming Models
• Message-passing (PVM, MPI)

— Individual processes exchange messages
— Works on clusters and on parallel computers (topology

transparent to user)
— Manual – transform to parallel

• Threading (OpenMP/threads)
— Efficient only on shared memory systems
— One process (environment), multiple threads
— Cheap, implicit communication
— Different scheduling approaches
— Limited (semi-) automatic – transform to parallel

Writing a parallel application Outline

• Introduction
• Taxonomy
• Memory Models
• Bus/ Interconnected
• Programming Models

— Message-passing (PVM, MPI)
— Threading (OpenMP/threads)

• Top500

MPI
• MPI 1 (1994) and later MPI 2 (1997) is designed as a

communication API for multi-processor computers.
• Passing messages between processes
• Implemented using a communication library of the

vendor of the machine.
• Adds an abstraction level between the user and this

vendor library, to guarantee the portability of the
program code.

• Work on heterogeneous workstation clusters
• High-performance communication on large multi-

processors
• Rich variety of communication mechanisms.

MPI
• Pros:

— Very portable
— Requires no special compiler
— Requires no special hardware but can make use of high

performance hardware
— Very flexible - can handle just about any model of parallelism
— No shared data! (You don’t have to worry about processes

"treading on each other's data" by mistake.)
— Can download free libraries (Linux PC)
— Forces you to decomposing your problem.

• Cons:
— All-or-nothing parallelism (difficult to incrementally transform to

parallel the existing serial codes)
— No shared data - Requires distributed data structures
— Could be thought of assembler for parallel computing - you

generally have to write more code
— Partitioning operations on distributed arrays can be messy.

Outline

• Introduction
• Taxonomy
• Memory Models
• Bus/ Interconnected
• Programming Models

— Message-passing (PVM, MPI)
— Threading (OpenMP/threads)

• Top500

OpenMP
• Is an API for multithreaded applications.

— A set of compiler directives, library routines and environment
variables.

• Initiated specification (basic loop-based parallelism) in
— Fortran (77 and up), C, and C++.

• Is fork-join model of parallel execution.
• Usually used to parallelize loops. (consuming loops)
• Threads communicate by sharing variables
• To control race conditions we use synchronization to

protect data conflicts. (Synchronization is expensive so
- change how data)

• Is available for a variety of platforms.

Fork-Join Parallelism:

• Master thread spawns a team of threads as needed.
• Parallelism is added incrementally: i.e. the sequential

program evolves into a parallel program.

OpenMP
• Pros:

— Incremental parallelism - can transform to parallel existing serial
codes one bit at a time

— Quite simple set of directives
— Shared data
— Partitioning operations on arrays is very simple.

• Cons:
— Requires proprietary compilers
— Requires shared memory multiprocessors
— Shared data
— Having to think about what data is shared and what data is

private
— Generally not as scalable (more synchronization points)
— Not well-suited for non-trivial data structures like linked lists,

trees etc

MPI vs OpenMP
• Pure MPI

— Pro:
– Portable to distributed and

shared memory machines.
– Scales beyond one node
– No data placement problem

— Con:
– Difficult to develop and

debug
– High latency, low bandwidth
– Explicit communication
– Large granularity
– Difficult load balancing

• Pure OpenMP
— Pro:

– Easy to implement parallelism
– Low latency, high bandwidth
– Implicit Communication
– Coarse and fine granularity
– Dynamic load balancing

— Con:
– Only on shared memory

machines
– Scale within one node
– Possible data placement

problem
– No specific thread order

Why Hybrid
• Hybrid MPI/OpenMP paradigm is the software trend for

clusters of SMP architectures.
• Elegant in concept and architecture:

— using MPI across nodes
— and OpenMP within nodes.
— Good usage of shared memory system resource (memory,

latency, and bandwidth).
• Avoids the extra communication overhead with MPI

within node.
• OpenMP adds fine granularity (larger message sizes)

and allows increased and/or dynamic load balancing.
• Some problems have two-level parallelism naturally.
• Some problems could only use restricted number of MPI

tasks.
• Could have better scalability than both pure MPI and

pure OpenMP.

Outline

• Introduction
• Taxonomy
• Memory Models
• Bus/ Interconnected
• Programming Models
• Top500

Top 500
Rank Site

Country/Year
Computer / Processors
Manufacturer

Computer
Family Model

Inst. type
Inst. Area

Rmax
Rpeak

Nmax
nhalf

1 Earth Simulator Center
Japan/2002

Earth-Simulator / 5120
NEC

NEC Vector
SX6 Research 35860

40960
1.0752e+06
266240

2 Los Alamos National
Laboratory
United States/2002

ASCI Q - AlphaServer SC45, 1.25 GHz / 8192
HP

HP AlphaServer
Alpha-Server-Cluster Research 13880

20480
633000
225000

3 Virginia Tech
United States/2003

1100 Dual 2.0 GHz Apple G5/Mellanox
Infiniband 4X/Cisco GigE / 2200
Self-made

NOW - PowerPC
G5 Cluster Academic 10280

17600
520000
152000

4 NCSA
United States/2003

Tungsten
PowerEdge 1750, P4 Xeon 3.06 GHz, Myrinet /
2500 Dell

Dell Cluster
PowerEdge 1750,
Myrinet

Academic 9819
15300

630000

5 Pacific Northwest
National Laboratory
United States/2003

Mpp2
Integrity rx2600 Itanium2 1.5 GHz, Quadrics /
1936 HP

HP Cluster
Integrity rx2600
Itanium2 Cluster

Research 8633
11616

835000
140000

6 Los Alamos National
Laboratory
United States/2003

Lightning
Opteron 2 GHz, Myrinet / 2816
Linux Networx

NOW - AMD
NOW Cluster - AMD -
Myrinet

Research 8051
11264

761160
109208

7 Lawrence Livermore
National Laboratory
United States/2002

MCR Linux Cluster Xeon 2.4 GHz - Quadrics /
2304
Linux Networx/Quadrics

NOW - Intel
Pentium
NOW Cluster - Intel
Pent. - Quadrics

Research 7634
11060

350000
75000

8 Lawrence Livermore
National Laboratory
United States/2000

ASCI White, SP Power3 375 MHz / 8192
IBM

IBM SP
SP Power3 375 MHz
high node

Research 7304
12288

640000

9 NERSC/LBNL
United States/2002

Seaborg
SP Power3 375 MHz 16 way / 6656
IBM

IBM SP
SP Power3 375 MHz
high node

Research 7304
9984

640000

10 Lawrence Livermore
National Laboratory
United States/2003

xSeries Cluster Xeon 2.4 GHz - Quadrics / 1920
IBM/Quadrics

IBM Cluster
xSeries Cluster Xeon
- Quadrics

Research 6586
9216

425000
90000

14 Chinese Academy of
Science
China/2003

DeepComp 6800, Itanium2 1.3 GHz, QsNet /
1024 Legend

Legend
DeepComp 6800 Academic 4183

5324.8
491488

15 Commissariat a
l'Energie Atomique
(CEA) France/2001

AlphaServer SC45, 1 GHz / 2560
HP

HP AlphaServer
Alpha-Server-Cluster Research 3980

5120
360000
85000

16 HPCx
United Kingdom/2002

pSeries 690 Turbo 1.3GHz / 1280
IBM

IBM SP
SP Power4, Colony Academic 3406

6656
317000

Top 500 Top 500

Earth Simulator
• Is a highly parallel vector supercomputer system
• Use distributed-memory
• 640 processor nodes (PNs)
• Connected by 640x640 single-stage crossbar switches

Earth Simulator
• Each PN is a system with a shared memory

— 8 vector-type arithmetic processors (APs)
— 16 GB main memory system (MS)
— remote access control unit (RCU)
— one I/O processor
— peak performance of each AP: 8GFlops

• 5120 APs with 10 TB of main memory
• Theoretical performance: 40TFlops

Earth Simulator
• MPI/ES is a message passing library based on the MPI-1

and MPI-2 standards
• Provides high-speed communication capability that fully

exploits the features of Interconnection Network and
shared memory.

• Can be used for both intra- and inter-node
parallelization.

• An MPI process is assigned to an AP in the flat
parallelization, or to a PN that contains microtasks or
OpenMP threads in the hybrid parallelization.

• MPI/ES libraries are designed and optimized carefully to
achieve highest performance of communication on the
ES architecture in both of the parallelization manner.

Evolution

Jack Dongarra

Solutions

Jack Dongarra

Final

“In respect of military method, we have, firstly,
Measurement; secondly, Estimation of quantity;
thirdly, Calculation; fourthly, Balancing of chances;
fifthly, Victory.”

“Fighting with a large army under your command is
nowise different from fighting with a small one: it is
merely a question of instituting signs and signals. “

SUN TZU ON THE ART OF WAR

