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A Cache Hierarchy in a Computer System
| S

“Ideally one would desire an indefinitely large memory
capacity such that any particular ... word would be
immediately available ... We are ... forced to recognize the
possibility of constructing a hierarchy of memories, each
of which has greater capacity than the preceding but
which is less quickly accessible.”

A. W. Burks, H. H.Goldstine, and J. Von Neumann
Preliminary Discussion of the Logical Design of an
Electronic Computing Instrument(1946)
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Evolution of DRAM and Processor Characteristics
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A Memory Hierarchy Example
ET

cache virtual memory

reqgister L1-cache L2-cache memory disk memory
larger, slower, cheaper N
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A Cache Hierarchy in a Computer System
T

» Why does it works

» Levels of cache

» How does it works

x Comparing & testing
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Why Does Cache Works

» Exploiting temporal locality. the same data
objects are likely to be reused multiple times..

x  Exploiting spatial locality. Blocks usually
contain multiple data objects. We can expect that
the cost of copying a block after a miss will be
amortized by subsequent references to other
objects within that block.
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Levels of Memory

» Registers
» Cache L1/L2
x Main Memory

» Disk Storage

register file
X Web Cache cache bus systembus  memory bus
W 1LTT 7 7

main
memory

Typical bus structure for L1 and L2 caches
Bryant and O'Hallaron

MICEI0304-Paulo Domingues 7

-che Hierarchy in a Computer System

Levels of Cache
|

* Primary
» Always on the CPU;
» Small (few KB) and very fast;
» Data and instructions may be separate;

» P4 has 20 KB
* Secondary

» Used to be off-chip, now is on chip;

* Much larger than primary cache;
» P4 has 512KB on-chip
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Characteristics

» Cache Size

» small enough that overall average cost/bit is close to
that of main memory alone

» large enough so that overall average access time is
close to that of cache alone

» large caches tend to be slightly slower than small ones
» available chip and board area is a limitation
» studies indicate that L1: 8-64KB, L2: 1-512KB is
optimum cache size (for now).
* Speed
» 710 20ns ;
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Characteristics
|

» Separate data and
instruction caches

» Unified data and
instruction caches
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Typical Cache

x It is composed of 2 types of fast memory devices

» SRAM - hold the actual data, address and status tags in
a direct mapped cache

» TAG RAM - small associative memories
» help with the accounting duties

» usually hold at least the address tags for non-direct mapped
caches

* provide fully parallel search capability (sequential search
would take too long )
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General organization of cache
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Block ldentification

x Components of an address as they relate to
the cache:

Block Address .
Offset
| Index

Tag

Tag: Is stored in the cache and used in comparison
with CPU address

Index: Used to select the set from the cache

Offset: The first bits of the address give the
offset of the byte within a block
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General Addressing Model
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Pentium 4 Cache

» 8-KB Level 1 Data Cache

» Level 1 Execution Trace Cache stores 12-K
micro-ops and removes decoder latency from main
execution loops

» 512-KB Advanced Transfer Cache (on-die, full-
speed Level 2 (L2) cache) with 8-way
Associativity
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How Cache works

» Cache Mapping

» Replacement of a Cache Block
x Cache Write Policy

» Cache Transfer Technologies

x Improving Cache Performance
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Cache Mapping: Direct mapping

Cache
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Each block of main memory gets a unique mapping;

If a program happens to repeatedly reference words from two different
blocks that map into the same cache line, then the blocks will be
continually swapped in the cache and the hit ratio will be low.
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Cache Mapping: Direct mapping
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64 KB cache, 32-byte cache block
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Cache Mapping: Associative Mapping

Allows each memory block to be loaded into any line of

the cache

Tag uniquely identifies a block of main memory

Cache control logic must simultaneously examine every
line’s tag for a match

Requires fully associative memory
* very complex circuitry
» complexity increases exponentially with size

* yery expensive
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Cache Mapping: Set Associative Mapping

» Compromise between direct and associative mappings
» Cache is divided into v sets, each of which has £ lines
» A given block will map directly to a particular set, but
can occupy any line in that set (associative mapping is
used within the set)

» The most common set associative mapping is 2 lines per

set, called two-way set associative. (It significantly improves
hit ratio over direct mapping, and the associative hardware is not too
expensive.)
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Cache Mapping: Associative Mapping
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32 KB cache, 2-way set-associative, 16-byte blocks
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Replacement of a Cache Block
|

» Random
» The simplest method

» Least-Recent Used (LRU)

» Expensive as cache increase

x First in, first out (FIFO)

» Simpler than LRU, and almost as good
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Cache Write Policy Write-Back Cache
| |
_ » CPU only updates cache line;
X - . . .
Write-Back Cache » Modified cache line only written to memory when
» Write-Through Cache replaced;
x Buffered Write-Through » Required “dirty-bit” for each cache line
» Memory not always consistent with cache.
Block Transfer
Word Transfer r\_&ﬂ
~A Main
Memory
CPU m: Main Memory Write (DRAM)
cpPu |Store. | cache |Back
Memory
23 MICEI0304-Paulo Domingues 24

MICEI0304-Paulo Domingues




Il Cache Hierarchy in a Computer System

Write-Through Cache

» CPU updates both cache and memory;
» Memory is always consistent with cache;

» Usually is combined with write buffers, meaning
that CPU doesn’t have to wait for memory to
complete write.

Write-Through Main
Memory
(DRAM)
CPU [Store Cache
Memory
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Cache Transfer Technologies

®

Cache Bursting
* Once the transfers are done in sequence there’s no need to specify
a different address after the first one.
Asynchronous Cache
» Transfers are not tied to the system clock. Is very slow for higher
clock cycles.
Synchronous Burst Cache

x Each tick of the system clock, a transfer can be done to or from the
cache.

Pipeline Burst (PLB) Cache

# The data transfers that occur in a "burst" are done partially at the
same time. The second transfer begins before the first transfer is
done.

*®

*®

x
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Improving Cache Performance

»

Reducing Miss Penalty
» Additional time required because of a miss
Reducing Miss Rate

» The fraction of memory references during the execution
of a program

»

o

Reducing Miss Penalty or Rate via Parallelism

¢

Reducing Hit Time

» Time taken to deliver a word in the cache to the CPU
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Reducing Miss Penalty
| .
» Multilevels Caches
» Small and faster L1; larger L2

Critical Word First and Early Restart

®

x As soon as first word of block arrives it’s delivered to CPU

®

Giving Priority to Read Miss over Writes
» The dirty block is written into a buffer
Merging Write Buffer

» Combine data without having to write immediately to
memory

Victim Caches

» Small, fully associative cache between L1 and L2
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Reducing Miss Rate
ET
» Larger Block Size
= It is likely that the next word will be after the last one
Larger Caches
# Increases cost and hit time
Higher Associativity

* An eight-way set associative cache is as effective as a full
associative cache

» The more a cache is associative the higher the hit time.
Way Prediction and PseudoAssociative Caches

» Extra bits are needed to early set the multiplexor to select the
desired block

Compiler Optimizations
» Merging Arrays, Loop Interchange, Loop Fusion, Blocking

*®

*®

x®

x®
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Reducing Miss Penalty or Rate via Parallelism
|

* NOIIblOCking Caches to Reduce stalls on cache Misses

» The cache can continue to supply cache hits during a
miss.

» H/W Prefetching of Instructions and Data

» The processor on a cache misses fetches besides the
requested blocks, the next one.

» Compiler-Controlled Prefetching
» Prefetching, performed by the compiler
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Reducing Hit Time

* Small and Simple Caches
» small hardware is faster
* Avoiding Address Translation during Indexing of
the Cache

» Using virtual addresses for thg cache

{ @ 1wy

* Pipelined Cache Access = |miw

Tt D Fully associative

» Trace Caches faf-
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Cache Optimization Summary

Technique Miss Rate Miss Pen. | Hit time | Hardware Complexity
Larger Block Size - 0
Higher Associativity
Victim Caches
Pseudo-associative
Hardware Prefetching

Compiler-controlled Pre

H o+ O+

Compiler Techniques
Giving Read Misses Priority
Subblock Placement

Early Restart/Crit Wd First
Nonblocking Caches

+ o+ o+ A+

Second-Level Caches
Small and Simple Caches - +
Avoiding Address Trans. +

—_— N O N W= = O W NN =

Pipelining Writes +
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Main Memory

» Latency

» Affects primarily cache, in the miss penalty

*x Bandwidth

» Has more effect on I/O and multiprocessors
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Improve Memory Bandwidth
|

*» Wider Main Memory
» Twice the width, half the memory accesses
» Simple Interleaved Memory

» Several chips in a memory system organized in banks
(each bank can be one word width)

» Independent Memory Banks

» Multiple independent accesses where multiple memory
controllers allow banks to operate independently
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Memory Bandwidth

|
(a) One-word-wide (b) Wide memory organization (c) Interleaved
mermory organization memory organization
CPU CPU CPU
Cache Cache Cache

= o
Multiplexor

[ Cache Memory || Memory || Memory || Memory

bank 0 bank 1 bank 2 bank 3

Bus

Memory

Memory
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Cache Coherence Problem
|

» Multiple copies of the same data in different
caches;

» Data in the caches is modified locally;
» Cache and memory can be incoherent;

» Data may become inconsistent between caches on
multiprocessor systems.
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Cache Coherence Problem - Solutions
H

» Declare shared data to be non-cacheable (by
software)

» Cache on read, but not cache write cycles;

» Use bus snooping to maintain coherence on write
back to main memory.

» Or Directory based: Cache lines maintain an extra
2 bits per processor to preserve clean/dirty status
bits.
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Exercices- Is the following code Cache-friendly?
E

#define N 1000

typedef struct {
int vel[3];

int acc[3];

An array of structs.

} point;

point p[N];
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Exercices- Is the following code Cache-friendly?

E
void clearl (point *p, int n)

{

int i, 3;

for (1 = 0; 1 < n; i++)

for (3 ;
pli]l.vell[J] = 0;
for (3 = 0; 37 < 3; j++)
plil.accl[j] = 0;

MICEI0304-Paulo Domingues 39

-ierarchy in a Computer System

Exercices- Is the following code Cache-friendly?

E
void clear2 (point *p, int n)

{

int i, 3;

for (i = 0; 1 < n; 1i++) {
for (3 = 0; J < 3; Jj++) {
pli]l.vel[J] = 0;
pli]l.accl[j] = 0;

}
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Exercices- Is the following code Cache-friendly?

N
void clear3 (point *p, int n)

for (3 = 0; 3 < 3; j++) {

for (i = 0; i < n; i++)
pl[i].vel[J] = 0;

for (i = 0; i < n; i++)
pli]l.accl[j] = 0;
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