Cache Hierarchy in a
Computer System

Autor: Paulo J. D. Domingues

A Cache Hierarchy in a Computer System
| S

“Ideally one would desire an indefinitely large memory
capacity such that any particular ... word would be
immediately available ... We are ... forced to recognize the
possibility of constructing a hierarchy of memories, each
of which has greater capacity than the preceding but
which is less quickly accessible.”

A. W. Burks, H. H.Goldstine, and J. Von Neumann
Preliminary Discussion of the Logical Design of an
Electronic Computing Instrument(1946)

MICEI0304-Paulo Domingues 2

-Iierarchy in a Computer System

Evolution of DRAM and Processor Characteristics

HT
tiny bandwidth == HUGE BOTTLEMECK
1808 T T T T T T
1688 CFU Speed —— -
o DRAN Speed —
s
£
i 18 |
=] E
e
i
I
o
1 E
a1 1
1975 1926 1985 1996 1995 2000 26685 26810
Y ear

MICEI0304-Paulo Domingues 3

-Iierarchy in a Computer System

A Memory Hierarchy Example
ET

cache virtual memory

reqgister L1-cache L2-cache memory disk memory
larger, slower, cheaper N
MICEI0304-Paulo Domingues 4

-che Hierarchy in a Computer System

A Cache Hierarchy in a Computer System
T

» Why does it works

» Levels of cache

» How does it works

x Comparing & testing

MICEI0304-Paulo Domingues 5

-che Hierarchy in a Computer System

Why Does Cache Works

» Exploiting temporal locality. the same data
objects are likely to be reused multiple times..

x Exploiting spatial locality. Blocks usually
contain multiple data objects. We can expect that
the cost of copying a block after a miss will be
amortized by subsequent references to other
objects within that block.

MICEI0304-Paulo Domingues

-che Hierarchy in a Computer System

Levels of Memory

» Registers
» Cache L1/L2
x Main Memory

» Disk Storage

register file
X Web Cache cache bus systembus memory bus
W 1LTT 7 7

main
memory

Typical bus structure for L1 and L2 caches
Bryant and O'Hallaron

MICEI0304-Paulo Domingues 7

-che Hierarchy in a Computer System

Levels of Cache
|

* Primary
» Always on the CPU;
» Small (few KB) and very fast;
» Data and instructions may be separate;

» P4 has 20 KB
* Secondary

» Used to be off-chip, now is on chip;

* Much larger than primary cache;
» P4 has 512KB on-chip

MICEI0304-Paulo Domingues

l Cache Hierarchy in a Computer System

Characteristics

» Cache Size

» small enough that overall average cost/bit is close to
that of main memory alone

» large enough so that overall average access time is
close to that of cache alone

» large caches tend to be slightly slower than small ones
» available chip and board area is a limitation
» studies indicate that L1: 8-64KB, L2: 1-512KB is
optimum cache size (for now).
* Speed
» 710 20ns ;

MICEI0304-Paulo Domingues 9

. Cache Hierarchy in a Computer System

Characteristics
|

» Separate data and
instruction caches

» Unified data and
instruction caches

FE_FFyg

instructions address

FF.FF,;

instructions.
cache registers
instructions
address instructions
processor

ad instructions
T L
pracessar

)
instructions address
s d b4 B

copies of
—

address memory

cache

"anad
data and data
cache memory

00..0046

00..00,,

MICEI0304-Paulo Domingues 10

l Cache Hierarchy in a Computer System

Typical Cache

x It is composed of 2 types of fast memory devices

» SRAM - hold the actual data, address and status tags in
a direct mapped cache

» TAG RAM - small associative memories
» help with the accounting duties

» usually hold at least the address tags for non-direct mapped
caches

* provide fully parallel search capability (sequential search
would take too long)

MICEI0304-Paulo Domingues 11

l Cache Hierarchy in a Computer System

General organization of cache

il
.) it ttag bit: =
» A cache is an array of Q%‘? porne. DM
. —
sets. Each set contains ERIDaEE
one or more lines. Each = Coo Mol o ool ||
line contains a valid bit,
some tag bits, and a block | _ Lo Jloli []
of data. S Eees ' [g J[o[1]-.-[s1]
o e [s J[o 1] [
» The cache organization set 5-1:
- - e [o][0 [1] Je]
induces a partition of the
m address bltS lntO ttag Cache size: C =B x E x S data bytes
bits, s set index bits, and e oot |
b block offset bits. , ; ;
tag setindex biock offset

MICEI0304-Paulo Domingues 12

IA Cache Hierarchy in a Computer System

Block ldentification

x Components of an address as they relate to
the cache:

Block Address .
Offset
| Index

Tag

Tag: Is stored in the cache and used in comparison
with CPU address

Index: Used to select the set from the cache

Offset: The first bits of the address give the
offset of the byte within a block

MICEI0304-Paulo Domingues 13

IA Cache Hierarchy in a Computer System

General Addressing Model

I Virtual Address = Tag ## In‘(lex ## Offset I
L L

_ _block Index
i |
¥ i !
I
I TLB I virtua 1 L,,
| »f Index r :
ph_vsical Jecode] Tag |
-~ RAM !
protect virtual 1 or more i SRAM
violation physical 4 ways |
Index | target tag ;
Mapped Jecode ‘
|
hit Vs] yway
-
data (f read) block l fem 1o
ata ({1 read oc Select
addr status block contents

tag tags

MICEI0304-Paulo Domingues

IA Cache Hierarchy in a Computer System

Pentium 4 Cache

» 8-KB Level 1 Data Cache

» Level 1 Execution Trace Cache stores 12-K
micro-ops and removes decoder latency from main
execution loops

» 512-KB Advanced Transfer Cache (on-die, full-
speed Level 2 (L2) cache) with 8-way
Associativity

MICEI0304-Paulo Domingues 15

IA Cache Hierarchy in a Computer System

How Cache works

» Cache Mapping

» Replacement of a Cache Block
x Cache Write Policy

» Cache Transfer Technologies

x Improving Cache Performance

MICEI0304-Paulo Domingues

-che Hierarchy in a Computer System

Cache Mapping: Direct mapping

Cache

00

na1
na
ol
101
1o
111

N
X?i \\
ML munnmt
AT TSNS S
00vo1 0010 01001 0110 10001 10w 11om 11
Memory

Each block of main memory gets a unique mapping;

If a program happens to repeatedly reference words from two different
blocks that map into the same cache line, then the blocks will be
continually swapped in the cache and the hit ratio will be low.

MICEI0304-Paulo Domingues 17

-che Hierarchy in a Computer System

Cache Mapping: Direct mapping

ET
3130292827 v 17161514131211109876543210
[tag \ index \ C]
[wordoffsst
16 11
valid tag data _
1 R
2 -~ ;
- § &
=
o
- [= g
B <
% &
2043
Sns 73
2047 £
256
P :
. . 2
hit/miss

64 KB cache, 32-byte cache block

MICEI0304-Paulo Domingues 18

-che Hierarchy in a Computer System

®

*®

"

®

Cache Mapping: Associative Mapping

Allows each memory block to be loaded into any line of

the cache

Tag uniquely identifies a block of main memory

Cache control logic must simultaneously examine every
line’s tag for a match

Requires fully associative memory
* very complex circuitry
» complexity increases exponentially with size

* yery expensive

MICEI0304-Paulo Domingues 19

-che Hierarchy in a Computer System

Cache Mapping: Set Associative Mapping

» Compromise between direct and associative mappings
» Cache is divided into v sets, each of which has £ lines
» A given block will map directly to a particular set, but
can occupy any line in that set (associative mapping is
used within the set)

» The most common set associative mapping is 2 lines per

set, called two-way set associative. (It significantly improves
hit ratio over direct mapping, and the associative hardware is not too
expensive.)

MICEI0304-Paulo Domingues 20

.che Hierarchy in a Computer System

Cache Mapping: Associative Mapping

3130292827 17161514131211109876543210
\ tag | index [7]
[wordoffset
18 10

valid tag data valid tag data o
o)
1 =
: -8
=7
o —
2 o
a2
v oo
g w
-
101 =
1022 |

1023 1

hd hd
L »(= »(=
hit/miss

32 KB cache, 2-way set-associative, 16-byte blocks

.che Hierarchy in a Computer System

Replacement of a Cache Block
|

» Random
» The simplest method

» Least-Recent Used (LRU)

» Expensive as cache increase

x First in, first out (FIFO)

» Simpler than LRU, and almost as good

MICEI0304-Paulo Domingues 21 MICEI0304-Paulo Domingues 22
.che Hierarchy in a Computer System .che Hierarchy in a Computer System
Cache Write Policy Write-Back Cache
| |
_ » CPU only updates cache line;
X - . . .
Write-Back Cache » Modified cache line only written to memory when
» Write-Through Cache replaced;
x Buffered Write-Through » Required “dirty-bit” for each cache line
» Memory not always consistent with cache.
Block Transfer
Word Transfer r_&ﬂ
~A Main
Memory
CPU m: Main Memory Write (DRAM)
cpPu |Store. | cache |Back
Memory
23 MICEI0304-Paulo Domingues 24

MICEI0304-Paulo Domingues

Il Cache Hierarchy in a Computer System

Write-Through Cache

» CPU updates both cache and memory;
» Memory is always consistent with cache;

» Usually is combined with write buffers, meaning
that CPU doesn’t have to wait for memory to
complete write.

Write-Through Main
Memory
(DRAM)
CPU [Store Cache
Memory
MICEI0304-Paulo Domingues 25

I\ Cache Hierarchy in a Computer System

Cache Transfer Technologies

®

Cache Bursting
* Once the transfers are done in sequence there’s no need to specify
a different address after the first one.
Asynchronous Cache
» Transfers are not tied to the system clock. Is very slow for higher
clock cycles.
Synchronous Burst Cache

x Each tick of the system clock, a transfer can be done to or from the
cache.

Pipeline Burst (PLB) Cache

The data transfers that occur in a "burst" are done partially at the
same time. The second transfer begins before the first transfer is
done.

*®

*®

x

MICEI0304-Paulo Domingues 26

l\ Cache Hierarchy in a Computer System

Improving Cache Performance

»

Reducing Miss Penalty
» Additional time required because of a miss
Reducing Miss Rate

» The fraction of memory references during the execution
of a program

»

o

Reducing Miss Penalty or Rate via Parallelism

¢

Reducing Hit Time

» Time taken to deliver a word in the cache to the CPU

MICEI0304-Paulo Domingues 27

I\ Cache Hierarchy in a Computer System

Reducing Miss Penalty
| .
» Multilevels Caches
» Small and faster L1; larger L2

Critical Word First and Early Restart

®

x As soon as first word of block arrives it’s delivered to CPU

®

Giving Priority to Read Miss over Writes
» The dirty block is written into a buffer
Merging Write Buffer

» Combine data without having to write immediately to
memory

Victim Caches

» Small, fully associative cache between L1 and L2
MICEI0304-Paulo Domingues 28

*®

»

-che Hierarchy in a Computer System

Reducing Miss Rate
ET
» Larger Block Size
= It is likely that the next word will be after the last one
Larger Caches
Increases cost and hit time
Higher Associativity

* An eight-way set associative cache is as effective as a full
associative cache

» The more a cache is associative the higher the hit time.
Way Prediction and PseudoAssociative Caches

» Extra bits are needed to early set the multiplexor to select the
desired block

Compiler Optimizations
» Merging Arrays, Loop Interchange, Loop Fusion, Blocking

*®

*®

x®

x®

MICEI0304-Paulo Domingues 29

-che Hierarchy in a Computer System

Reducing Miss Penalty or Rate via Parallelism
|

* NOIIblOCking Caches to Reduce stalls on cache Misses

» The cache can continue to supply cache hits during a
miss.

» H/W Prefetching of Instructions and Data

» The processor on a cache misses fetches besides the
requested blocks, the next one.

» Compiler-Controlled Prefetching
» Prefetching, performed by the compiler

MICEI0304-Paulo Domingues 30

-che Hierarchy in a Computer System

Reducing Hit Time

* Small and Simple Caches
» small hardware is faster
* Avoiding Address Translation during Indexing of
the Cache

» Using virtual addresses for thg cache

{ @ 1wy

* Pipelined Cache Access = |miw

Tt D Fully associative

» Trace Caches faf-

3
. . ST | i
* Finds a dynamic sequence of.in§rudlionin gl

taken branches to load into a‘gaghe 0 g
o

4 KB BKB 16KB 32KB G4KBR 128KB 256KB

Cache size

MICEI0304-Paulo Domingues 31

-che Hierarchy in a Computer System

Cache Optimization Summary

Technique Miss Rate Miss Pen. | Hit time | Hardware Complexity
Larger Block Size - 0
Higher Associativity
Victim Caches
Pseudo-associative
Hardware Prefetching

Compiler-controlled Pre

H o+ O+

Compiler Techniques
Giving Read Misses Priority
Subblock Placement

Early Restart/Crit Wd First
Nonblocking Caches

+ o+ o+ A+

Second-Level Caches
Small and Simple Caches - +
Avoiding Address Trans. +

—_— N O N W= = O W NN =

Pipelining Writes +
MICEI0304-Paulo Domingues 32

.#ache Hierarchy in a Computer System

Main Memory

» Latency

» Affects primarily cache, in the miss penalty

*x Bandwidth

» Has more effect on I/O and multiprocessors

MICEI0304-Paulo Domingues 33

.{L‘ache Hierarchy in a Computer System

Improve Memory Bandwidth
|

*» Wider Main Memory
» Twice the width, half the memory accesses
» Simple Interleaved Memory

» Several chips in a memory system organized in banks
(each bank can be one word width)

» Independent Memory Banks

» Multiple independent accesses where multiple memory
controllers allow banks to operate independently

MICEI0304-Paulo Domingues 34

.{zache Hierarchy in a Computer System

Memory Bandwidth

|
(a) One-word-wide (b) Wide memory organization (c) Interleaved
mermory organization memory organization
CPU CPU CPU
Cache Cache Cache

= o
Multiplexor

[Cache Memory || Memory || Memory || Memory

bank 0 bank 1 bank 2 bank 3

Bus

Memory

Memory

MICEI0304-Paulo Domingues 35

.*}ache Hierarchy in a Computer System

Cache Coherence Problem
|

» Multiple copies of the same data in different
caches;

» Data in the caches is modified locally;
» Cache and memory can be incoherent;

» Data may become inconsistent between caches on
multiprocessor systems.

MICEI0304-Paulo Domingues 36

-ierarchy in @ Computer System

Cache Coherence Problem - Solutions
H

» Declare shared data to be non-cacheable (by
software)

» Cache on read, but not cache write cycles;

» Use bus snooping to maintain coherence on write
back to main memory.

» Or Directory based: Cache lines maintain an extra
2 bits per processor to preserve clean/dirty status
bits.

MICEI0304-Paulo Domingues 37

-ierarchy in a Computer System

Exercices- Is the following code Cache-friendly?
E

#define N 1000

typedef struct {
int vel[3];

int acc[3];

An array of structs.

} point;

point p[N];

MICEI0304-Paulo Domingues 38

-ierarchy in a Computer System

Exercices- Is the following code Cache-friendly?

E
void clearl (point *p, int n)

{

int i, 3;

for (1 = 0; 1 < n; i++)

for (3 ;
pli]l.vell[J] = 0;
for (3 = 0; 37 < 3; j++)
plil.accl[j] = 0;

MICEI0304-Paulo Domingues 39

-ierarchy in a Computer System

Exercices- Is the following code Cache-friendly?

E
void clear2 (point *p, int n)

{

int i, 3;

for (i = 0; 1 < n; 1i++) {
for (3 = 0; J < 3; Jj++) {
pli]l.vel[J] = 0;
pli]l.accl[j] = 0;

}

MICEI0304-Paulo Domingues 40

-hy in a Computer System

Exercices- Is the following code Cache-friendly?

N
void clear3 (point *p, int n)

for (3 = 0; 3 < 3; j++) {

for (i = 0; i < n; i++)
pl[i].vel[J] = 0;

for (i = 0; i < n; i++)
pli]l.accl[j] = 0;

MICEI0304-Paulo Domingues 41

