

#### **Benchmarking overview**

Measuring execution time

- Processor speed
- Disk and memory accesses
- Amount and type of memory
- Operating system
- Compilers
- Evel of optimization

## ÷ ...

ICCA'04; 22<sup>nd</sup> January 2004

Benchmark suites to measure computer performance

#### **Benchmarking overview**

#### Benchmarking: what's important?

- The precise hardware configuration: type of processor, clock speed, number of CPUs, memory size, cache size, video processor and memory, bus, disk speed, and so on.
- The operating system environment like OS version, filesystem, number of concurrent users, etc.
- The version of the benchmark used.
- The program language used (same program could have different execution times if implemented in different languages).
- Compiler used and optimizing level during compilation of benchmarks.

Benchmark suites to measure computer performance

#### **Benchmarking overview**

- **Benchmarking** can be defined has a task of measuring the performance of a system/subsystem (or application) on a task or on a well defined set of tasks.
- The task/workload that is measured is the so called benchmark.

# The user's own workload on it's own system is the best benchmark!

#### ICCA'04; 22<sup>nd</sup> January 2004

Hernâni Correia

Benchmark suites to measure computer performance

**Benchmarking overview** 

Types of benchmarks:

- Real programs
- Kernels
- Toy benchmarks
- Synthetic benchmarks

Hernâni Correia

#### **Generic benchmarks**

#### MIPS

MIPS (or Million Instructions per second) has been one alternative to metrics that use only time.

MIPS specify the instruction execution rate but it's dependent on the instruction set, making difficult to compare MIPS of different machines with different instruction sets.

#### Whetstone and Dhrystone benchmarks

Whetstone benchmark was the first intentionally written to measure computer performance and was designed to simulate floating point numerical applications.

Dhrystone is a benchmark program written for testing system's integer performance.

Hernâni Correia

Benchmark suites to measure computer performance

### **TPC benchmarks**

- TPC (Transaction Processing Performance Council) - consortium of vendors that defines benchmarks for transaction processing and database domains.
- Define how the tests should run, how system price should be measured and how the results should be reported.

Benchmark suites to measure computer performance

#### **Generic benchmarks**

#### Lynpack benchmark

- Derived from a real application which was originated as a collection of linear algebra subroutines in Fortran. It tests **floating point** performance and results are presented in Mflops (millions of floating point instructions per second).
- It provides three separate benchmarks: Fortran n = 100, Linpack n=1000, HPL (Highly Parallel Computing).
- HPL is a software package that generates and solves a random dense linear system of equations on distributed-memory computers using 64-bit floating point arithmetic.
- HPL is the benchmark used for the Top500 report.

ICCA'04; 22<sup>nd</sup> January 2004

Hernâni Correia

Benchmark suites to measure computer performance

### **TPC benchmarks**

- TPC-D: database benchmark, whose intent is to simulate ad hoc queries characterizing the performance of decision support systems.
- TPC-W is a transactional web benchmark.
  - Workload on the system is performed in a controlled internet commerce environment.
  - Simulates the activities of a business oriented transactional web server.

ICCA'04; 22<sup>nd</sup> January 2004

## **SPEC** benchmarks

- SPEC (Standard Performance Evaluation Corporation) - nonprofit consortium made up by hardware/software vendors, universities, customers and different consultants.
- Intention: develop technically credible and objective system-level benchmarks.
- Benchmarks are derived from real programs
  - placing on the system real workloads.
  - producing realistic results.

ICCA'04; 22<sup>nd</sup> January 2004

#### Benchmark suites to measure computer performance

#### SPEC CPU2000 benchmark

- CPU2000 benchmark replace CPU95 in measuring the performance of the computer's processor (CPU), memory architecture and compilers on the tested system.
- Reference machine: Sun Ultra10 workstation with a 300 MHz SPARC processor and 256 MB of memory.
- It has two different components: CINT2000 and CFP2000.

Benchmark suites to measure computer performance

## **SPEC benchmarks**

- SPECmail2001 is a mail server benchmark (based on Internet SMTP and POP3 protocols).
- SPECweb99 is the benchmark for measuring performance of web servers.
- SPECjvm98 measures performance of Java Virtual Machines

ICCA'04; 22<sup>nd</sup> January 2004

Hernâni Correia

Benchmark suites to measure computer performance

## SPEC CPU2000 benchmark

#### CINT2000

| Benchmark   | Language | Resident size | Virtual size | Description                        |
|-------------|----------|---------------|--------------|------------------------------------|
|             |          | (Mb)          | (Mb)         |                                    |
| 164.gzip    | C        | 181           | 200          | Compression                        |
| 175.vpr     | C        | 50            | 55.2         | FPGA circuit placement and routing |
| 176.gcc     | C        | 155           | 158          | C programming language compiler    |
| 181.mcf     | С        | 190           | 192          | Combinatorial optimization         |
| 186.crafty  | С        | 2.1           | 4.2          | Game playing: Chess                |
| 197.parser  | C        | 37            | 62.5         | Word processing                    |
| 252.eon     | C++      | 0.7           | 3.3          | Computer visualization             |
| 253.perlbmk | C        | 146           | 159          | Perl programming language          |
| 254.gap     | C        | 193           | 196          | Group theory, interpreter          |
| 255.vortex  | C        | 72            | 81           | Object-oriented database           |
| 256.bzip2   | C        | 185           | 200          | Compression                        |
| 300.twolf   | C        | 1.9           | 4.1          | Place and route simulator          |

Hernâni Correia

Hernâni Correia

ICCA'04; 22<sup>nd</sup> January 2004

# **SPEC CPU2000 benchmark**

## CFP2000

| Benchmark    | Language | Resident size | Virtual size | Description                          |
|--------------|----------|---------------|--------------|--------------------------------------|
|              |          | (Mb)          | (Mb)         |                                      |
| 168.wupwise  | F77      | 176           | 177          | Physics: Quantum chromodynamics      |
| 171.swim     | F77      | 191           | 192          | Shallow water modelling              |
| 172.mgrid    | F77      | 56            | 56.7         | Multigrid solver: 3D potential field |
| 173.applu    | F77      | 181           | 191          | Partial differential equations       |
| 177.mesa     | С        | 9.5           | 24.7         | 3D graphics library                  |
| 178.galgel   | F90      | 63            | 155          | Computational fluid dynamics         |
| 179.art      | С        | 3.7           | 5.9          | Image recognition/neural networks    |
| 183.equake   | С        | 49            | 51.1         | Seismic wave propagation simulation  |
| 187.facerec  | F90      | 16            | 18.5         | Image processing: Face recognition   |
| 188.ammp     | C        | 26            | 30           | Computational chemistry              |
| 189.lucas    | F90      | 142           | 143          | Number theory/primarily testing      |
| 191.fma3d    | F90      | 103           | 105          | Finite-element crash simulation      |
| 200.sixtrack | F77      | 26            | 59.8         | Nuclear physics accelerator design   |
| 301.apsi     | F77      | 191           | 192          | Meteorology: Pollutant distribution  |

ICCA'04; 22<sup>nd</sup> January 2004

Hernâni Correia

Benchmark suites to measure computer performance

# **SPEC CPU2000 benchmark**

|    | Metrics                          |                                                                       |
|----|----------------------------------|-----------------------------------------------------------------------|
| sp | speed /                          | SPECint2000 / SPECfp2000                                              |
|    |                                  | SPECint_base2000 / SPECfp_base2000 SPECint_rate2000 / SPECfp_rate2000 |
|    | normalized<br>throughput         | SPECint_rate_base2000 / SPECfp_rate_base2000                          |
|    |                                  |                                                                       |
|    | ICCA'04; 22 <sup>nd</sup> Januar | ry 2004 Hernâni Correia                                               |