The CPU IA-64: Key Features to Improve Performance

Ricardo Freitas Universidade do Minho 22nd January 2004

IA-64 Overview

Speculation:

- Data Speculation
- Control Speculation

IA-64: Overview: Speculation Predication EPIC - Explicit Parallel Instruction Computing

- Registers Set
- Register Stack Engine RSE

Predication

To reduce branching 64 predicate registers (1 bit each) when predicate is false instruction is not executed

C code:

- r2=r1==0?r4+r5:r3+r6+1;
- IA-64 assembler: cmp.eq p1,p2=r0,r1;; ~ (p1) add r2=r4,r5 (p2) add r2=r3,r6,1

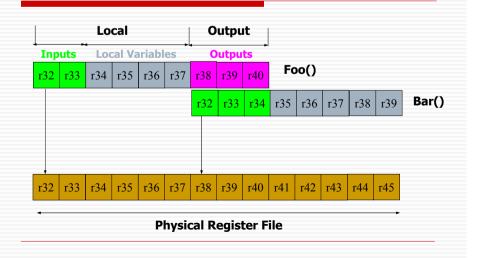
- synchronization

EPIC

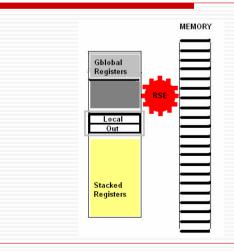
registers

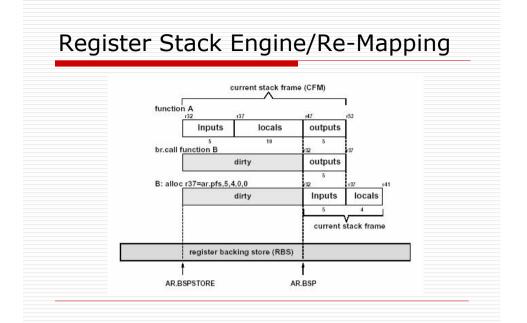
Iots of execution units

Explicit parallelism Bundles of 3 instructions Template field encodes Type of execution units needed (M-unit for memory access, I-unit for integer operations, F-unit for floating point, B-unit for branching) stop bit to express sequential dependency 128-bit bundle 127 instruction 2 instruction 1 instruction 0 template 41 41 41 5 Massive resources 128 integer (64bits) & 128 floating point (82bits)


Registers Set

- 128 general-purpose registers, each 64 bits wide.
 - Static general-purpose registers (r0 - r31)
 Dynamic general-purpose registers (r32 - r127)


128 floating-point registers, each 82 bits wide, (f0 – f127).


□ 8 branch registers, b0 through b7.

Dynamic general-purpose registers

Register Stack Engine

Register Stack Engine

- □ Stack frame partition:
 - Local area: input parameters and local variables
 - Output area: output values
 - Can also be used as rotation registers

Register Remaping

Register Stacking

Register Rotation

Conclusions

- New instructions for register stack manipulation
- Large register file
- Automatic save/restore of general registers on function call/return
- Renaming scheme
- Transparent register stack spill/fill