Hardware Requirements for Cellular Processors

Eduardo Valente

ICCA'04, Universidade do Minho

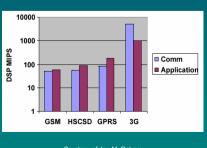
Contents

- Mobile Phones Generations
- Common Hardware Backbone
- Hardware Requirements for Actual Cellular Processors
- The Ideal Cellular Processor Model
- Examples of Cellular Processors
- Intel PXA800F
- Conclusions

Mobile Phones Generations

- First Generation (1G)
 - Invention of Microprocessors
 - Digitization of the control link between mobile phone and cell site
 - Frequency Division Multiple Access
- Second Generation (2G)
 - Digital voice signal and Networks
 - Global System for Mobile Communications
 - Time Division Multiple Access
 - Code Division Multiple Access

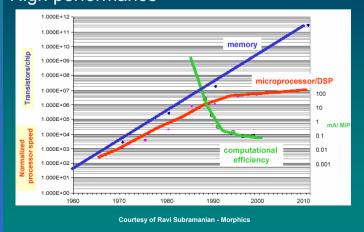
Mobile Phones Generations


- Generation 2.5 (2.5G)
 - GSM based
 - GPRS
 - UMTS
- Third Generation (3G)
 - Faster communications services
 - Multimedia, Fax and Internet
 - International Mobile Telecommunications

Common Hardware Backbone Radio-Frequency Source: CEN Workshop Agreement, April 2003

Hardware Requirements for Actual Cellular Processors Evolution capacity Small area 10 Billion 100s of Millions 100s of Millions 100s of Millions Shrinking size (GS Research)

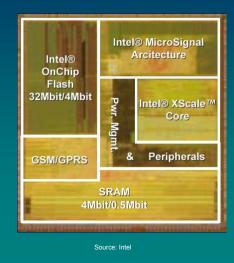
Hardware Requirements for Actual Cellular Processors


- Handle higher bit-rates
- Reduced power consumes
- Large application field

Courtesy of Jan M. Rabaey

Hardware Requirements for Actual Cellular Processors

High performance


The Ideal Cellular Processor Model Reconfigurable State Machines Embedded uP + DSPs FPGA Dedicated DSP Reconfigurable Data Path

Courtesy of Jan M. Rabaey

Examples of Cellular Processors

- Philips' Nexperia
 - System on Chip design
 - Media processing and connectivity
- Motorola's i.MX
 - Applications processors
 - Advanced floating-point technology
- Texas Instruments's OMAP1710
 - Applications processor
 - DSP engine
 - supports advanced mobile operating systems such as Linux, Microsoft's Windows Mobile, ...

Intel PXA800F

Intel PXA800F

- Intel XScale technology
 - Process applications and GSM/GPRS protocol stack
 - Controller of external memory and I/O
- Intel MSA technology
 - DSP applications for GSM/GPRS baseband
 - General control
- OnChip Flash

Intel PXA800F

- Parallelism
- Integrated Code/data (Flash/SRAM) memories
- Reduced System-level latencies
- Higher System-level Performance
- Reduced System-level power
- Lower Energy
- Lower Cost for overall platform
- Reduced Area for the platform
- Reduced RF Edge Rate Noise Effects

Conclusions

- Achievements
 - Integration / Scalability
 - High performance in both applications and communication sub-systems
 - Low latencies
 - Low energy consumes
 - Small area
 - Low Cost
- The bounds
- Future hardware requirements

##