
ISA Implementations Partly in
Software

Run programs for one ISA on hardware with different ISA
Techniques:

• Emulation
– OS software interprets instructions at run-time
– E.g., OS for PowerPC Macs had emulator for 68000

code

• Binary Translation
– convert at install and/or load time
– IBM AS/400 to modified PowerPC cores
– DEC tools for VAX->MIPS->Alpha

• Dynamic Translation (or Dynamic Compilation)
– compile non-native ISA to native ISA at run time
– Sun’s HotSpot Java JIT (just-in-time) compiler
– Transmeta Crusoe, x86->VLIW code morphing

• Run-time Hardware Emulation
– Hardware supports two ISAs!
– IBM 360 had IBM 1401 emulator in

microcode
– Intel Itanium converts x86 to native VLIW (two

software-visible ISAs)

Dynamic Translation

•Translate code sequences as needed at
run-time, but cache results.

•Can optimize code sequences based on
dynamic information (e.g., branch targets
encountered).

•Tradeoff between optimizer run-time and time
saved by optimizations in translated code

•Technique used in Java JIT compilers

• Also, Transmeta Crusoe for x86
emulation

Transmeta Crusoe
•Converts x86 ISA into internal native VLIW format
using software at run-time ->Code Morphing”

•Translations cached to avoid translator overhead on
repeated execution

•Completely invisible to operating system – looks
like x86 hardware processor

Transmeta Translation

x86 code:
addl %eax, (%esp) # load data from stack,

add to eax
addl %ebx, (%esp) # load data from stack,

add to ebx
movl %esi, (%ebp) # load esi from memory
subl %ecx, 5 # sub 5 from ecx

first step, translate into RISC ops:

ld %r30, [%esp] # load from stack into temp
add.c %eax, %eax, %r30 # add to %eax, set

cond.codes
ld %r31, [%esp]
add.c %ebx, %ebx, %r31
ld %esi, [%ebp]
sub.c %ecx, %ecx, 5

Compiler Optimizations

Optimize:
ld %r30, [%esp] # load from stack only once
add %eax, %eax, %r30
add %ebx, %ebx, %r30 # reuse data loaded earlier
ld %esi, [%ebp]

sub.c %ecx, %ecx, 5 # only this cond. code needed

Scheduling

Schedule into VLIW code:
ld %r30, [%esp]; sub.c %ecx, %ecx, 5
ld %esi, [%ebp]; add %eax, %eax, %r30; add %ebx, %ebx,%r30

