Now is time to look for compilers that solve the
challenging problem of creating power efficient and
high-performance software

Energy-
Conscious
Compilers

Energy-
Exposed §
Architectures’

i
Tiieet 11




Energy-
Conscious
Compilers

Energy-
Exposed 3§
Architectures|

Current pipelined machines invest significant
energy in preserving precise exception
semantics

Instructions results are buffered before
committed in order, requiring register
renaming logic to find the correct value for
new instructions

Even a simple five-stage RISC pipelined has
a bypass network

Actual machines provide some mechanisms
to manage exceptions

Precise exceptions are supported in a
pipelined machine
hardware must either buffer updates in form of

future files until all possible exceptions have
cleared, or...

save old machine state in history buffers, so that it
can be recalled when exceptions are detected




Iw, RS, (r3)
add SD, RS, 1




The compiler often knows when the program is
accessing the same piece of memory. Don’t
check the cache tags for the second access

SW challenge — find the opportunities for use.
Compiler algorithms for C languages

Direct addressing allows software to cache
data without the hardware performing a
cache tag check

Loop unrolling to increase aligned references

An array of 64 bits-data and the cache line size
of 32 bytes

for (1=0; i<N; i++) { for(i=0; i<N; i++) {

A[i]l = 0; if (&A[I] % line size == 0)
3 break;

A[TI] = 0;

3

for(; i<N; i += 4) {
Ali + 01 = 0; A[i + 11
Ali + 21 = 0; Ali + 31

Data cache energy reduction 8.7 - 40%




Instructions perform many hidden
microarchitectural operations as they execute

Compile-time analysis can statically
determine that much of the work is

unnecessary

By providing an energy-exposed instruction
set, this analysis information can be
transmitted to the hardware to save energy
without impacting performance

Tag-unchecked loads and stores are an
example which use compile time analysis to
access the cache with direct address
registers instead of costly tag checks.

Software restart markers reduce this
overhead by enabling the introduction of
temporary state that does not have to be
saved and restored across exceptions.

Exposed bypass latches are an example of
allowing software to make use of temporary
state to avoid microarchitectural operations at
run time; in this case register file reads and
write are statically eliminated.




