
Power Aware
Techniques:

Extensions to ISAs

ICCA 04

Universidade do Minho – Departamento de Informática

Eva Oliveira

A wide range of current and new technologies employ
low-power systems
In the last few years, hardware was largely improved
to reach better (low) energy levels

Now is time to look for compilers that solve the
challenging problem of creating power efficient and
high-performance software

Introduction: The decade of
Power Aware

Where does the power go?
Implementations of modern RISC/VLIW ISAs
perform a large number of microarchitectural
operations for each instruction
– For integer add instruction on 5-stage RISC
pipeline only ~2% of energy is the 32-bit adder
circuit itself
– Rest includes cache tags and data, TLBs, register
files,pipeline registers, exception state management
No incentive to expose these microarch ops in a
purely performance-oriented ISA

Energy-Exposed ISA’s

An Investigation of processor
power consumption must be
performed at the most elementary
level – the instruction level
Some authors proposed energy-
exposed hardware-software
interfaces to give software more
fine-grain control over energy
consuming microarchitectural
operations

Energy-Exposed ISA’s

A RISC microprocessor was
modified to support the three
techniques proposed
Compiler algorithms were
developed to target the enhanced
instruction set

Energy-Exposed techniques

Software restart markers: improves
exception state managment, dividing
the instruction stream into restartable
regions

Bypass latches: eliminate register files
traffic

Tag unchecked loads and stores :
optimize the hardware tag check time
by eliminating it

Software Restart Markers

Current pipelined machines invest significant
energy in preserving precise exception
semantics
Instructions results are buffered before
committed in order, requiring register
renaming logic to find the correct value for
new instructions
Even a simple five-stage RISC pipelined has
a bypass network

Software Restart Markers

Actual machines provide some mechanisms
to manage exceptions
Precise exceptions are supported in a
pipelined machine

hardware must either buffer updates in form of
future files until all possible exceptions have
cleared, or…
save old machine state in history buffers, so that it
can be recalled when exceptions are detected

Software Restart Markers

These schemes add additional exceptions
state managment energy overhead to the
executions of all instructions

Software Restart Markers:
Compiler Analysis

SRM reduce energy cost of exceptions
managment by requiring software to explicity
divide the instruction stream into restartable
regions

Bypass Latches

Half of the values written to the register file
are used exactly once, usually by the
instruction executed immediatly after the one
producing the value.

lw r1, (r3) load value
add r1, r1 , 1 increment

Bypass Latches

Giving software explicity control of the
bypass latches, it is possible to reduce the
register file traffic considerably

lw, RS, (r3)
add SD, RS, 1

Same performance, but writes and reads
have been avoided and replaced with

accesses to the bypass latches

Bypass Latches

Reduced register file activity
only write to bypass latches, not regfile

reduce reads from reg file on avergae 28%
On average, 34% of all writes are
eliminated

Tag-Unchecked Loads
and Stores

Memory system, including caches, consumes
a significant fraction of system power
Tag check in the primary data cache is one
significat source of energy consumption

Direct addressing allows software to cache
data without the hardware performing a
cache tag check

Tag-Unchecked Loads
and Stores

The compiler often knows when the program is
accessing the same piece of memory. Don’t
check the cache tags for the second access
HW challenge — make this path low power
SW challenge — find the opportunities for use.

Compiler algorithms for C languages
Interface challenge — minimize ISA changes,
don’t disrupt HW, don’t expose too much HW
detail.

Compiler Algorithm (C)

Loop unrolling to increase aligned references
An array of 64 bits-data and the cache line size
of 32 bytes

Data cache energy reduction 8.7 - 40%

Conclusions

Instructions perform many hidden
microarchitectural operations as they execute
Compile-time analysis can statically
determine that much of the work is
unnecessary
By providing an energy-exposed instruction
set, this analysis information can be
transmitted to the hardware to save energy
without impacting performance

Conclusions

Software restart markers reduce this
overhead by enabling the introduction of
temporary state that does not have to be
saved and restored across exceptions.
Exposed bypass latches are an example of
allowing software to make use of temporary
state to avoid microarchitectural operations at
run time; in this case register file reads and
write are statically eliminated.

Conclusions

Tag-unchecked loads and stores are an
example which use compile time analysis to
access the cache with direct address
registers instead of costly tag checks.

