Introduction:

CLR .
: _ = What is a
A new virtual machine = CLT and

- execution and performance on CLR

Joao Ferreira = Unix with “.NET”
joao.ferreira@progmat.com

(c) Jodo Ferreira - ICCA 2004 (c) Jodo Ferreira - ICCA 2004

Virtual Machines

= Problems with
= Why “virtual”? e Machine arquitecture dependence
e Operating system conventions
o Compiler specific issues

Virtual Machines

o that translates from
one language to another

HIGH LEVEL LANGUAGE .

= 10 solve this...

e Develop a language that executes as
(UNCOL, Lisp, P-Code, etc.)

e Failure &> not running at native speed!

(c) Jodo Ferreira - ICCA 2004 (c) Jodo Ferreira - ICCA 2004

Virtual Machines

Source Code (High Level Language)

Compiler produces bytecode

L |

VIRTUAL MACHINE

MISC HARDWARE/SOFTWARE

(c) Jodo Ferreira - ICCA 2004

Common Language Runtime

= Microsoft marketing > .NET (DotNet)

= Is nothing more than a virtual
machine, however..

= Based on > a standard designed
from the scracth to

(c) Jodo Ferreira - ICCA 2004

New era of VM

= JVM and CLR

o Use (Just-In-Time) to produce well-
optimized native machine code

e Bytecode ()
+

¢ native code generation (
+

e Bytecode

o — doesn’t now the mean of
registers

(c) Jodo Ferreira - ICCA 2004

Common Language Infraestructure

= International Standard (ECMA)
s CLI Specification

(c) Jodo Ferreira - ICCA 2004

CTS (Common Type Specification)

= A rich that supports the
types and operations found in many.
programming languages

= TO support a range of programming
languages

= Defines a set of for types

= Designed for object oriented, procedural
and functional languages

= More than 15 languages implemented
CTS

(c) Jodo Ferreira - ICCA 2004

CIL (Common Intermediate LLanguage)

Also known as [l or MSIL (Microsoft)

A language more “higher” than native
instruction set

Based on — self describing
An

e Can create instances of objects

e Call virtual methods

e Work with arrays

e Throw and catch exceptions!

(c) Jodo Ferreira - ICCA 2004

CLS (Common Language Specification)

m A of CTS

= Defines the for each
language interop with each other

(c) Jodo Ferreira - ICCA 2004

CIL Example

static void TestMethod (int a, int b) // arguments activation
record

int c; int d; int e;

Argument 1.
3 % 5 Incoming

afhdggents

load argument no. num onto the stack

... > ..., value DL d
Local 1

variahlas
ldarg.l Local 0

load local variable no. indx onto the stack

... > ..., value

Idloc.1

(c) Jodo Ferreira - ICCA 2004

atic void TestMethod (int a, int b)

<4

c; int d; int e; evaluation stack

CIL Example
e=c ;
load numeric constant }
(1374 .method public hidebysig static void TestMethod(int32 a,int32
b) cil managed
{
ld 4 10 /I Code size 12 (Oxc)
C.1 .maxstack 2

Jocals init ([0] int32 c,
[]int32 d,
[2]int32 e)

IL_0000: Idarg.0

IL_0001: Idarg.1

IL_0002: add

SthC.O IL_0003: stloc.0

IL_0004: Idc.i4.s 10

IL_0006: stloc.1

IL_0007: Idloc.0

IL_0008: Idloc.1

IL_0009: add

IL_000a: stloc.2

IL_000b: ret

}// end of method Class1::TestMethod

i)
oo

pop value from stack to local
variable

..., value 2 ...

store a value in an argument

(c) Jodo Ferreira - ICCA 2004

VES (Virtual Execution System)

= [s the Microsoft VES (Virtual Execution
= Implements and enforces System) for CLI

= Will load and run programs written = CLR will use:
for the (with)

= Handles all the major overheads of
traditional programming models

= How it will load? To run CLI-compliant programms into Win32
J and Intel x86 architectures.

(c) Jodo Ferreira - ICCA 2004 (c) Jodo Ferreira - ICCA 2004

CLR Execution Model

CLR Execution Model

oy
Component

Application .
Domain Commeon Language Runtime

JIT Compiler

During Development...

= Ok.. Some code...written with notepad:

using System;
class Hello

public static void Main()

{

System.Console.WriteLine("Hello world!");
System.Console.WriteLine(*Bye world!”);

b
s

Operating System Services

(c) Jodo Ferreira - ICCA 2004 (c) Jodo Ferreira - ICCA 2004

User executes ola.exe... CLR starts!

Compiling the source code

m csc ola.il (managed code) Process’s primar
Result: ola.exe > Assembly!

i ¢ -

» Resulting file is a PE (Portable Executable)

Managed EXE
.text section JMP _CorExeMain

Managed module Tool combining .Assembl)f idata section
(IL and metadata) multiple (Manifest describes the MSCorEE.dIl
set of files in the

managed modules assembly) CLR header DLL: MSCorLib.dIl
Managed module and i Function: _CorExeMain
(IL and metadata) resource files into Managed module 1L
an assembly (IL and metadata)
» Metadata
Ctt compiler Managed module
(CSC.exe), (IL and metadata)

Visual Basic 1." MSCorEE examines CLR headerto get Main method'simetadata token.
Compiler 3 . MSCorEE examines the Main's metadata to get location of IL within'the EXE.

(VBC.exe),
Assembly Linker
(AL.exe)

MSCorEE compiles Main's IL to native CPU.
MSCorEE jumps to Main's (using primary thread) — the application runs.

(c) Joao Ferreira - ICCA 2004

Ok.. We got the ILL.. And now?? JIT will'translate IL toi CPU instructions

. . : . .) : Method Structure to Console
.method public hidebysig static void Main() cil managed static void WriteLine ()

{ ola.exe — m

.entrypoint e
B Console.WriteLine ("Hello World"); X X X X .
// Code size 21 (0x15) Console.WriteLine ("Bye World"): static void WriteLine (string)

.maxstack 1 } itCompiler
IL 0000: "Hello world!"
IL 0005: void [mscorlib]System.Console: :WritelLine (string) (remaining members)

IL 000a: "Bye world!" S E—

IL 000f: void [mscorlib]System.Console: :WriteLine (string)

IL 0014: MSCorEE.dIl

} // end of method Hello: :Main . JITCompiler function {
In the assembly that implements the (vpe (Console) look up the method
(Writeline) being called in metadata.
From the metadata, get the |1 for this method.
Allocate the block of memory.
Compile the IL into native CPU instructions; the native code is saved in the
memory allocated in step 4.
Modify the method's entry in the Type's table so that it now points to the
memory block allocated in step 4.
Jump to the native code contained inside the memory block.

1
5

(c) Jodo Ferreira - ICCA 2004 (c) Jodo Ferreira - ICCA 2004

Already Jited?

JIT Performance and Issues

Console
static void WriteLine ()
Managed.exe Conp T

oid WriteLine (string)

= Platform Independence

e Realized when high-level language
(remaining members) Com p”ers tO platform
— agnostic

MSCorEE.dll e The application or is
distributed in this form
From the metadav® ate [for this method.

Allocate the block of iR ¢ JIT compiles to native code either at

Compile the IL into native CPU 1% maos: the native code is saved i

memory allocated in step 4. O r a t

adify the method's entry in the Type's table so the®
mos mlock allocated in step 4
Jump to the e e
\

(c) Jodo Ferreira - ICCA 2004 (c) Jodo Ferreira - ICCA 2004

JIT Performance and Issues JIT Performance and Issues

= Language Interoperability = Runtime Stack Manipulation

e Occurs when compilers e The populates important data
compile to structures for object tracking and specific

o and the
play a major role in cross-language and
platform independence

(c) Jodo Ferreira - ICCA 2004

JIT performance and issues

= Small Memory Footprint
o JIT compilation takes advantage of the
possibility that

e The JIT Compiler compiles methods

(c) Jodo Ferreira - ICCA 2004

-frame construction

e The JIT Compiler can be used to
specific code elements as they are
, i.e., exception handlers and
security descriptors (Verifier)

(c) Jodo Ferreira - ICCA 2004

JIT Performance and Issues

JIT compiler knows more about the
than an unmanaged compiler

would know
JIT compiler can take

offered by the chip that the
unmanaged compiler knows nothing about
JIT compiler could detect that a

, and short-circuit

The CLR could the code’s execution
and the IL on the fly reducing
branching, etc.

(c) Jodo Ferreira - ICCA 2004

The problems...

is pre-compiled and
can just execute

= Managed code requires
phases
e Compiler produces IL

o [L compiled to native code at runtime,
requiring more memory to be allocated, and
additional CPU cycles

(c) Jodo Ferreira - ICCA 2004

Unix with .NET

Mono Project

WWW.JO-mMOoNo.com

= DotGnu

= http://www.gnu.org/projects/dotgnu

(c) Jodo Ferreira - ICCA 2004

Alternatives to JIT

s NGEN.EXE - Install Time tool to
create a into the native
cache

- a file containing
compiled processor-specific machine
code

Good for heavy startup applications
Use it at client-side

(c) Jodo Ferreira - ICCA 2004

What they did?

Designed a generating IL code
(ECMA 334) - C# taking note of CTS and
CLS rules

with JIT's

= A resides in the " mcs'
module in the directoy " class'. Each
directory in the directory represents the
assembly where the code belongs to, and
inside each directory they divide the code
based on the namespace they implement.

(c) Jodo Ferreira - ICCA 2004

DotGnu

= Created —> interpret programms
in the CIL bytecode format (Ecma
335)

= CIL > converted to (Converted
Virtual Machine)

- — compiler ANSI C and Ecma
334

(c) Jodo Ferreira - ICCA 2004

Conclusion

= CLI is a standard - if you want
portability, all languages should be CLI-
compliant

= Want run CLI?
e make your own VES!
e Make your JIT!

(c) Jodo Ferreira - ICCA 2004

