Speculative

Precomputation

by Catlos Cunha

University of Minho

Portugal

ICCA 2004

Introduction

m The difference between the speed of computation and
the speed of memory access continues to grow (CPU-
memory gap)

The actual processors have Simultaneous
Multithreading (SMT) characteristics, improving overall
throughput under a multiprogramming workload

The use of various thread contexts on SMT, only
improve the system performance when there are more
than one thread executing

ICCA 2004

Outline

Introduction
Speculative Precomputation

SP Tasks

m Delinquent Loads identification
m P-Slices
m Triggers establishment

Software based SP (SSP)
SSP implementation on Itanium

Conclusion

ICCA 2004

Speculative Precomputation (SP)

m SP uses idle hardware thread contexts to execute
speculative threads that attempt to avoid future
cache misses

m Data are loaded in advance from memory and
passed to the non-speculative thread

m SP targets static loads that cause most stalls in
the non-speculative thread.

ICCA 2004

Speculative Precomputation (SP)

ICCA 2004

SP — Delinquent Loads

m For most programs, the cache misses are
dominated by a few static loads

m We call these pootly behaved loads, delinquent
loads

m Identification of delinquent loads is detetmined
by memory access profiling, performed by a
compiler or a memory access simulator

ICCA 2004

SP - Tasks

m Speculative Precomputation follows a set of
mandatory steps:

= identification of delinquent loads
m construction of p-slices for these loads
m establishment of triggers.

m This work can be performed with compiler
assistance as well as some hardware support

ICCA 2004

SP — P-Slices

m Once a load is identified as delinquent, a p-slice is
constructed to prefetch the load

m P-slices are spawned when encountering a trigger,
which occurs when a designated trigger
instruction in the main thread reaches a particular
stage in the pipeline

ICCA 2004

P-Slices - Example Software based SP (SSP)

m SSP requires two basic mechanisms to support thread

spawning:
DATATYPE * data [100]; p g

® a mechanism to bind a spawned thread to a free hardware
context

® a mechanism to transfer necessary live-in values to the child

thread

m A machine that employs ideal, one-cycle flash copy
between registers files of two thread contexts, permits
the non-speculative thread to spawn speculative threads
instantly

ICCA 2004 i ICCA 2004

SSP — Itanium Implementation SSP — Itanium Implementation

® An ideal machine may be difficult to implement on
processors like the Itanium family processors, due to
the cost of implementing a flash copy mechanism for
such large register files.

| Spawning a thread on the [INo Spawn Cost EIPipeflush EFlush+8 cyc OFlush+16 cyc
SSP approach is no longer
instantaneously as the

_ _ hardware approach
In the case of Itanium, we can explore a less aggressive

but more practical software-based SP (SSP) approach The non-speculative thread

will slow down by the time

m The Itanium processor family has:

ﬂ@CCSSer to lflVOkC and art equake gzip mef health mst Average

® on-chip memory buffers, which are used as spill area for the execute the exception
backing store of the Register Stack Engine (RSE), called Live- handler, and the p-slices

in Buffer (LIB) must be modified to first

m the Lightweight Exception Recovery mechanism (LER), load dhste vallaes Gromm the
which is used to recover from incorrect control and data LIB

speculations.
ICCA 2004 ICCA 2004

Chaining Triggers

m Chaining p-slices are able to spawn future instances of
themselves, decoupling thread spawning from non-
speculative thread execution.

Executing on Different
Hardware Thread Contexts

1d2 r9=[LIB]
PROLOGUE 1d2 rll=[LIB]+2
Low latency bdd ro9=r9,ril
instructions
st8 [LIB] =xr9
ot8 [LIB+8]=r1l
[Fpanm T | hde re-(LIE]
1de rll=[LIB]+82
EPILOGUE praach e =] hdd r9-13,rll
Patentially fong [dd rl15=20,1l6 Et8 [LIB] =18
atency instructions! 1d4 T21=[r15] Et2 [LIB+8] =ril

[Spawn

lde.s rlé=[r9]
add rl5=80,1l&
1d4 r2l=[rl5]

ICCA 2004

Chaining Triggers - Performance

‘ 02 Thread Contexts E4 Thread Contexts B8 Thread Contexts

2.8
2.6
24
2.2

2
1.8
1.6
14

Speedup over Baseline

1
0.8

1.2 1

[N

-

art

equake

gzip

mef

health mst Average

ICCA 2004

Conclusion

When spawning threads fall on the main non-speculative thread
(via basic triggers), the potential speedup is as high as 30%
assuming fast register copies between thread contexts

However, under more realistic assumptions, the potential
speedup is significantly reduced

When the speculative threads can also spawn other speculative
threads (via chaining triggers), these speedups are as high as
169% and average 76% over all benchmarks

This is achieved via a software based mechanism that can utilize
existing Itanium processor features with very little additional
hardware support.

ICCA 2004

