
SIGGRAPH 2000 course on ”Rendering and Visualization in Parallel Environments”

Rendering and Visualization in Parallel Environments

Dirk Bartz
WSI/GRIS

University of Tübingen
Email: bartz@gris.uni-tuebingen.de

Bengt-Olaf Schneider
IBM T.J. Watson Research Center

Email: bosch@us.ibm.com

Claudio Silva
AT&T Labs - Research

Email: csilva@research.att.com

The continuing commodization of the computer market has precipitated a qualitative change. Increasingly powerful processors,
large memories, big harddisk, high-speed networks, and fast 3D rendering hardware are now affordable without a large capital
outlay. A new class of computers, dubbed Personal Workstations, has joined the traditional technical workstation as a platform
for 3D modeling and rendering. In this course, attendees will learn how to understand and leverage both technical and personal
workstations as components of parallel rendering systems.

The goal of the course is twofold: Attendees will thoroughly understand the important characteristics workstations architectures.
We will present an overview of these architectures, with special emphasis on current technical and personal workstations, address-
ing both single-processors as well as SMP architectures. We will also introduce important methods of programming in parallel
environment with special attention how such techniques apply to developing parallel renderers.

Attendees will learn about different approaches to implement parallel renderers. The course will cover parallel polygon rendering
and parallel volume rendering. We will explain the underlying concepts of workload characterization, workload partitioning, and
static, dynamic, and adaptive load balancing. We will then apply these concepts to characterize various parallelization strategies
reported in the literature for polygon and volume rendering. We abstract from the actual implementation of these strategies and
instead focus on a comparison of their benefits and drawbacks. Case studies will provide additional material to explain the use of
these techniques.

The course will be structured into two main sections: We will first discuss the fundamentals of parallel programming and
parallel machine architectures. Topics include message passing vs. shared memory, thread programming, a review of different
SMP architectures, clustering techniques, PC architectures for personal workstations, and graphics hardware architectures. The
second section builds on this foundation to describe key concepts and particular algorithms for parallel polygon rendering and
parallel volume rendering.

For updates and additional information, see
http://www.gris.uni-tuebingen.de/˜bartz/sig2000course

Preliminary Course Schedule

5 min Introduction Bartz

Part One: Foundations Bartz/Schneider

25 min Personal Workstations Schneider
20 min Technical Workstations Bartz
60 min Parallel Programming Bartz

Part Two: Rendering Schneider/Silva

45 min Parallel Polygonal Rendering Schneider
60 min Parallel Volume Rendering Silva

5 min Questions and Answers Bartz/Schneider/Silva

SIGGRAPH 2000 course on ”Rendering and Visualization in Parallel Environments”

Course Speakers

Dirk Bartz is currently member of the research staff of the Computer Graphics Laboratory (GRIS) at the Computer Science
department of the University of T¨ubingen. His recent works covers interactive virtual medicine and thread-based visualization
of large regular datasets. In 1998, he was co-chair of the ”9th Eurographics Workshop on Visualization in Scientific Computing
1998”, and he is editor of the respective Springer book. Dirk studied computer science and medicine at the University of
Erlangen-Nuremberg and the SUNY at Stony Brook. He received a Diploma (M.S.) in computer science from the University of
Erlangen-Nuremberg. His main research interests are in visualization of large datasets, occlusion culling, scientific visualization,
parallel computing, virtual reality, and virtual medicine.

Bengt-Olaf Schneiderholds a degree in electrical and computer engineering from the Technical University in Darmstadt
(Germany) and a doctorate from the University of T¨ubingen. After completion of his Ph.D. work he joined the IBM T.J. Watson
Research Center in Yorktown Heights, first as a Postdoc and later as a Research Staff Member and Manager. He is currently a
manager for 3D graphics architecture and 3D graphics software. He has also taught as an adjunct assistant professor at Columbia
University in New York. Bengt has been the organizing co-chair of the 10th and 11th Eurographics Workshops on Graphics
Hardware, program co-chair for the Siggraph/Eurographics Workshop on Graphics Hardware and is a member of the editorial board
of Computer Graphics Forum. He has published technical papers on computer architecture and computer graphics algorithms. He
also holds several patents in those areas. His research interests include computer architectures for multimedia, parallel graphics
algorithms and rendering algorithms for high-performance graphics.

Claudio Silva is a Senior Member of Technical Staff in the Information Visualization Research Department at AT&T Research.
Before joining AT&T, Claudio was a Research Staff Member at IBM T. J. Watson Research Center, where he worked on geometry
compression, 3D scanning, visibility culling and polyhedral cell sorting for volume rendering. Claudio got his Ph.D. in computer
science at the State University of New York at Stony Brook in 1996. While a student, and later as an NSF Postdoc, he worked at
Sandia National Labs, where he developed large-scale scientific visualization algorithms and tools for handling massive datasets.
His main research interests are in graphics, visualization, applied computational geometry, and high-performance computing.

Content

I Course Notes

A. Foundations
A.1 Personal Workstations Schneider
A.2 Technical Workstations Bartz
A.3 Parallel Programming Bartz

B. Rendering
B.1 Parallel Polygonal Rendering Schneider
B.1 Parallel Volume Rendering Silva

C Bibliography

II Slides

S1. Introduction Bartz
S2. Personal Workstations Schneider
S3. Technical Workstations Bartz
S4. Parallel Programming Bartz
S5. Parallel Polygonal Rendering Schneider
S6. Parallel Volume Rendering Silva

III Re-Prints
The PVR System Silva

2

SIGGRAPH 2000 course on ”Rendering and Visualization in Parallel Environments”

Part I

Foundations

1 Personal Workstations

1.1 Introduction

The advent of powerful processors and robust operating systems for PCs has sparked the creation of a new type of compute
platform, the Personal Workstation (PWS). Several vendors, including Compaq, HP, and IBM, sell systems that are targeted at
market segments and applications that till only a few years ago were almost exclusively the domain of UNIX-based technical
workstations [103]. Such applications include mechanical and electrical CAD, engineering simulation and analysis, financial
analysis, and digital content creation (DCC). PWSs are rapidly adopting many features from UNIX workstations, such as high-
performance subsystems for graphics, memory, and storage, as well as support for fast and reliable networking. This development
creates the opportunity to leverage the lower cost of PWSs to attack problems that were traditionally in the domain of high-end
workstations and supercomputers. We will start with an overview of the state of the technology in PWSs and their utility for building
parallel rendering systems. Then we will discuss how to improve parallel rendering performance by enhancing PWS subsystems
like disks or network connections like disks or

1.2 Personal Workstations

1.3 Architecture

In accordance with the intended application set, PWSs constitute the high-end of the PC system space. Figure 1 shows the archi-
tecture of a typical Personal Workstation.

PCI

Memory
Chipset

Peripherals

Graphics

CPU (Frontside) Bus

L2$

CPU 0 L2$

CPU 1

AGP

Figure 1: Architecture of a PWS.

The system contains one or two Pentium II processors, large L2 caches (up to 512 kBytes) and main memory (32 MBytes up to
several GBytes). If configured with multiple CPUs, the system acts as a symmetric multiprocessor (SMP) with shared memory. As
is well known, shared memory architectures have only limited scalability due to finite access bandwidth to memory. Current PWSs
only support dual-processor configurations.

The chipset connects the main processor(s) with other essential subsystems, including memory and peripherals. Among the tech-
niques employed to improve the bandwidth for memory accesses are parallel paths into memory [2] and faster memory technolo-
gies, e.g. Synchronous DRAM (SDRAM) [62]. Intel has announced that its next generation processor will use Rambus (RDRAM)
technology to increase the available memory bandwidth.

The graphics adapter is given a special role among the peripherals due to the high bandwidth demands created by 3D graphics.
The Accelerated Graphics Port (AGP) [3] provides a high-bandwidth path from the graphics adapter into main memory. The AGP
extends the basic PCI bus protocol with higher clock rate and special transfer modes that are aimed at supporting the storage of
textures and possibly z-buffers in main memory, thus reducing the requirements for dedicated graphics memory.

3

SIGGRAPH 2000 course on ”Rendering and Visualization in Parallel Environments”

Integer performance: 650 MIPS
Floating point performance: 250 MFLOPS
Memory bandwidth: 150 MBytes/sec
Disk bandwidth: 13 MBytes/sec

Table 1: Approximate peak performance data for a Personal Workstation.

Token Ring 16 Mbit/sec: 14-15 Mbit/sec
Ethernet 10 Mbit/sec: 7-8 Mbit/sec
Ethernet 100 Mbit/sec: 90 Mbit/sec
Ethernet 1 Gbit/sec: 120 Mbit/sec

Table 2: Peak bandwidth between Personal Workstations for different LAN technologies.

The graphics adapter itself supports at least the OpenGL functionality for triangle setup, rasterization, fragment processing [12]
as well as the standard set of 2D functions supported by Windows. Currently, most low-end and mid-range graphics adapters
rely on the CPU to perform the geometric processing functions, i.e. tessellation of higher-order primitives, vertex transformations,
lighting and clipping. However, a new class of high-end PC graphics adapters is emerging that implement the geometry pipeline
in hardware. Hardware-supported geometry operations are important because rasterizers reach performance levels (several million
triangles/sec and several 10 million pixels/sec) that cannot be matched by the system processor(s). Also, geometry accelerators can
usually provide acceleration more economically than the CPU, i.e. lower $/MFlops, while freeing the CPU for running applications.
However, geometry accelerators will only deliver significant improvements to application performance if the application workload
contains a large portion of graphics operations. Many applications (and application-level benchmarks) contain only short bursts of
graphics-intensive operations.

Balancing the system architecture requires fast disk, e.g. 10,000 rpm SCSI disk drives, and networking subsystems, e.g. 100
Mbit/sec or 1Gbit/sec Ethernet.

1.3.1 Parallel Configurations

For the purposes of parallel rendering we will be considering two forms of parallelism: tightly coupled processors in a SMP
configuration (as shown in Figure 1) and a cluster of workstations connected over networks. While in a single-processor machine
CPU performance is often the most important factor in determining rendering performance, parallel configurations add specific
constraints to the performance of parallel rendering algorithms. For SMP workstations, the performance is affected by memory
and disk bandwidth. For workstation clusters, the disk and network bandwidth are the most important parameters influencing the
rendering performance. The next section provides concrete values for these parameters.

1.3.2 Performance

To illustrate the performance that can be expected from a PWS we provide approximate performance data in Table 1.
These data were measured with an in-house tool on a preproduction workstation configured with a Pentium II Xeon processor

running at 450 MHz, 512 KBytes of L2 cache, Intel 440GX chipset, 256 MBytes of 100 MHz SDRAM system memory and a
9.1 GByte Ultra-2 SCSI disk. The system ran Windows NT 4.0 with Service Pack 4. Note that many factors affect the actual
performance of workstations, amongst them BIOS level, memory architecture and core logic chipset.

We have also conducted measurements of networking performance using various local area network technologies (Table 2).
These measurements consisted of transferring large data packets and used the TCP/IP stack that is part of Windows NT 4.0. Note
that the observed bandwidth for Gigabit-Ethernet is far below the expected value. A likely source for this shortfall is inefficiencies
in the implementation of the TCP/IP stack and the resulting high CPU loads. It is well known that such inefficiencies can result in
severe performance degradations [32] and we expect that a better TCP/IP stack would raise the transfer rate.

1.3.3 PWS Market Trends

So far we have reviewed technical characteristics of PWSs. When selecting a workstation platform technical issues are but one
factor.

The developments in the PWS market reflect the PWS’s dual-inheritance from Unix workstations and PCs.
As the NT workstation markets matures the price gap between the best performing systems and the systems with best price-

performance appears to be closing. This is a known trend know from the desktop PC market which has turned into a commodity
market. The PWS market is assuming characteristics of a commodity market with surprising speed, i.e. most products are very
similar and have to compete through pricing, marketing and support offerings.

At the same time, PWSs remain different from desktop PCs – and are similar to Unix workstations – in that application perfor-
mance (in contrast to servicability and manageability) is the primary design and deployment objective. Most purchasing decisions
are heavily based on the results in standard and customer-specific application benchmarks.

4

SIGGRAPH 2000 course on ”Rendering and Visualization in Parallel Environments”

A particularly interesting question is whether PWSs offer inherently better price-performance than traditional Unix workstations.
Over the period that both workstation types participated in the market (1996-1999), NT workstations as a whole have consistently
delivered better price-performance than Unix workstations for standard benchmarks. Only recently (mid 1998) Unix workstation
are beginning to reach the same price-performance levels. It is unclear whether this constitutes a reversal of the earlier trend or
whether the gap will be restored when Intel delivers its next generation processors. Another explanation for the narrowing of this
gap is that NT workstations are starting to include high-performance subsystems that are required for balanced systems (see below).

1.4 Building Parallel Renderers from Personal Workstations

Parallel rendering algorithms can be implemented on a variety of platforms. The capabilities of the target platform influence the
choice of rendering algorithms. For instance the availability of hardware acceleration for certain rendering operations affects both
performance and scalability of the rendering algorithm.

Several approaches to implementing parallel polygon rendering on PWSs with graphics accelerators have been investigated in
[105]. It should be noted that this analysis does not consider pure software implementations of the rendering pipeline; rasterization
was assumed to be performed by a graphics adapter.

This is in contrast to software-only graphics pipelines. Such approaches lead to more scaleable rendering systems, even though
both absolute performance and price-performance are likely to be worse than the hardware-accelerated implementation. In [127]
parallel software renderers have shown close to linear speedup up to 100 processors in a BBN Butterfly TC2000 even though the
absolute performance (up to 100,000 polygons/sec) does not match the performance available from graphics workstations of equal
or lower cost. However, software renderers offer more flexibility in the choice of rendering algorithms, e.g. advanced lighting
models, and the option to integrate application and renderer more tightly.

Following the conclusions from [105] we will now look at the various subsystems in a PWS that may become a bottleneck
for parallel rendering. In part, PWSs have inherited these bottlenecks from their desktop PC ancestors. For example, both mem-
ory and disk subsystems are less sophisticated than those of traditional workstations. We will also discuss the merit of possible
improvements to various subsystems with respect to parallel rendering performance.

Applications and Geometry Pipeline.As pointed out above, CPU portion of the overall rendering time scales well with the
number of processors. Therefore, it is desirable to parallelize rendering solutions with a large computational component. Advance
rendering algorithms such as advanced lighting algorithms or ray-tracing will lead to implementations that scale to larger numbers
of processors.

Processor. Contrary to initial intuition, the performance of CPU and rasterizer does not significantly influence the overall
rendering performance. Therefore, parallel rendering does not benefit from enhancements to the CPU, such as by higher clock
frequency, more internal pipelines or special instructions to accelerate certain portions of the geometry pipeline. However as stated
earlier, faster CPUs may benefit the applications performance.

Memory Subsystem.Currently, memory bandwidth does not limit rendering performance as much as disk and network perfor-
mance. We expect that memory subsystems will keep increasing their performance over time and retain their relative performance
compared to disks and networks. Therefore, more sophisticated memory subsystems, like [2], will not improve parallel rendering
performance.

Disk Subsystem.The disk subsystem offers ample opportunity for improvements over the standard IDE or SCSI found in todays
PWSs. Faster disk subsystems, e.g. SSA [1] or RAID 0 (disk striping), can be used to alleviate this problem.

Graphics Subsystem.In workstation clusters the use of graphics accelerators with geometry accelerators can be beneficial. For
applications with mostly static scenes, e.g. walkthroughs or assembly inspections, the use of retained data structures like display
lists can reduce the bandwidth demands on system memory as geometry and lighting calculations are performed locally on the
adapter. In SMP machines or for single-frame rendering faster graphics hardware will not provide large rendering speed-ups.

Network. In clusters, a slow network interconnect can become the dominant bottleneck. Increasing the network bandwidth by
an order of magnitude will alleviate that problem. As stated above, current shortcomings of the protocol implementations prevent
full realization of the benefits of Gigabit-Ethernet under Windows NT. Alternative technologies, like Myrinet [38] promise higher
sustained bandwidth than Ethernet. However, these technologies are either not available under Windows NT or have not yet been
developed into a product. Prototype implementations under Unix (Linux) have demonstrated the advantages of such networks.

1.5 Conclusion

As Personal Workstations are emerging as an alternative to traditional workstations for technical applications they are frequently
considered as building blocks for affordable parallel rendering.

Even though PWS are used for parallel rendering in at least one commercial rendering package [57], its actual implementation
is hampered by the lack of efficient networking technologies and insufficient disk performance. Improving these subsystems is
possible but will result in more expensive systems, eliminating some of the perceived cost advantage of PWS over traditional
workstation.

2 Technical Workstations

In this section, we discuss general aspects of parallel environments. Although our tutorial covers PCs and workstations, we will
focus in this section only on workstation environments. However, most of the information on software aspects (message passing,
process communication, and threads) is applicable to all UNIX environments (i.e., Linux).

5

SIGGRAPH 2000 course on ”Rendering and Visualization in Parallel Environments”

The following sections will discuss the different parallel approaches, architectures, and programming models for parallel envi-
ronments.

2.1 Parallel Approaches

Three basic approaches are available for parallel environments. The first approach connects different computers via a network into a
cluster of workstations (or PCs). On each individual computer processes are started to perform a set of tasks, while communication
is organized by exchanging messages via UNIX sockets, message passing (i.e., PVM), or – more recently – via the Internet. We
call this type a loosely-coupled system, sometimes referred as a distributed processing system.

The second approach consists of a single computer, which contains multiple processing elements (PE which actually are proces-
sors). These processing elements are communicating via message passing on an internal high-speed interconnect, or via memory.
This type is called a tightly-coupled system. In contrast to the first approach, communication is faster, usually more reliable, and –
in the case of a shared memory system – much easier to handle. However, depending of the interconnection system, the number of
processing elements is limited.

The third basic approach is a fusion of the first two approaches. We generally can combine tightly- or loosely-coupled systems
into a hybrid-coupled system. However, in most cases we will loose the advantages of a tightly-coupled system.

2.2 Taxonomy

Flynn developed a taxonomy to classify the parallel aspects of the different (more or less) parallel systems. However, this taxonomy
actually only applies to tightly-coupled systems.

Flynn distinguishes two basic features of a system, the instruction stream (I) – which is code execution – and the data stream
(D) – which is the data flow. These features are divided into a single (S) or multiple stream (M). In a single instruction stream,
only one instruction can be individually performed by a set of processors, while a multiple instruction stream can perform different
instructions at the same time. If we have a single data stream, only this data can be computed or modified at the same time. With a
multiple data stream, more than one data element can be processed.

Overall, we have four different types of parallel processing:

� SISD - is the standard workstation/PC type. A single instruction stream of a single processor is performing a task on a single
data stream.

� SIMD - is the massively-parallel, or array computer type. The same instruction stream is performed on different data. Al-
though a number of problems can easily mapped to this architecture (i.e., matrix operations), some problems are difficult to
solve with SIMD systems.

Usually, these systems cost hundreds of thousands of US$ one of the reasons these machines are not covered by this tutorial.

� MISD - is not a useful system. If multiple instructions are executed on a single data stream, it will end up in a big mess.
Consequently, there are no computer systems using the MISD scheme.

� MIMD - is the standard type of a parallel computer. Multiple instruction streams perform their task on their individual data
stream.

2.3 Memory Models

Many aspects of parallel programming depend on the memory architecture of a system, and many problems arise from a chosen
memory architecture. The basic question is if the memory is assigned to the processor level, or if the memory is assigned on
system level. This information is important for the distribution of a problem to the system. If all memory – except caches – is
accessible from each part of the system – memory is assigned on system level, we are talking of a shared memory system. In case
the individual processing elements can only access their own private memory – memory is assigned on processor level, we are
talking of a distributed memory system. Shared memory systems are further divided into UMA (Uniform Memory Access) systems
(not interchangeable with Uniform Memory Architecture), and into NUMA (Non-Uniform Memory Access) systems.

2.3.1 Distributed Memory Systems

In distributed memory systems, the memory is assigned to each individual processor. At the beginning of the processing, the system
is distributing the tasks and the data through the network to processing elements. These processing elements receive the data and
their task and start to process the data. At some point, the processors need to communicate with other processors, in order to
exchange results, to synchronize for periphery devices, and so forth. Finally, the computed results are sent back to the appropriate
receiver and the processing element waits for a new task. Workstation clusters fit into this category, because each computer has its
individual memory, which is (usually) not accessible from its partner workstations within the cluster. Furthermore, each workstation
can distribute data via the network.

Overall, it is important to note that communication in a distributed memory system is expensive. Therefore, it should be reduced
to a minimum.

6

SIGGRAPH 2000 course on ”Rendering and Visualization in Parallel Environments”

2.3.2 Shared Memory Systems

UMA systems contain all memory1 in a more or less monolithic block. All processors of the system access this memory via
the same interconnect, which can be a crossbar or a bus (Figure 2). In contrast, NUMA systems are combined of two or more
UMA levels which are connected via another interconnect (Figure 3). This interconnect can be slower than the interconnect on
the lower level. However, communication from one UMA sub-system to another UMA sub-system travels through more than one
interconnection stage and therefore, takes more time than communication within one UMA sub-system.

CPU MemoryCPU.........

Interconnect

Figure 2: Uniform Memory Access

If UMA systems have a better communication, why should we use NUMA systems? The answer is that the possibilities to extend
UMA systems are limited. At some point the complexity of the interconnect will virtually rise into infinity, or the interconnect will
not be powerful enough to provide sufficient performance. Therefore, a hierarchy of UMA sub-systems was introduced.

A special case of NUMA systems is cache-coherent NUMA (ccNUMA). This scheme ensures (usually in hardware) that the
memory view of the execution entities (i.e., threads) is identical (see Section).

CPU MemoryCPU.........

Interconnect

I
n
t
e
r
c
o
n
n
e
c
t

CPU Memory

Interconnect

CPU.........

..........

Figure 3: Non-Uniform Memory Access

2.4 Programming Models

So far, we have introduced different approaches of parallelization (loosely-coupled or distributed processing, tightly-coupled pro-
cessing, and hybrid models of loosely- or tightly-coupled processing) and different memory access architectures. In this section,
we add two different paradigms for the programming of parallel environments.

2.4.1 Message-Passing

This programming paradigm connects processing entities to perform a joined task. As a matter of principle, each processing entity
is an individual process running on a computer. However, different processes can run on the very same computer, especially, if
this computer is a multi-processor system. The underlying interconnection topology is transparent from the users point of view.
Therefore, it does not make a difference in programming, if the parallel program which communicates using a message-passing
library runs on a cluster of workstations (i.e., Beowulf), on a distributed memory system (i.e., the IBM RS6000/SP), or on a shared
memory system (i.e., the SGI 2x00).

For the general process of using a message-passing system for concurrent programming it is essential to manually split the
problem to be solved into different more or less independent sub-tasks. These sub-tasks and their data are distributed via the
interconnect to the individual processes. During processing, intermediary results are sent using the explicit communication scheme
of message-passing. Considering the high costs using the network, communication must be reduced to a minimum and the data
must be explicitly partitioned. Finally, the terminal results of the processing entities are collected by a parent process which returns
the result to the user.

Their are several message-passing libraries around. However, most applications are based on two standards, which are explained
in Section 3.3 and Section 3.2; the PVM library (Parallel Virtual Machine) and the MPI standard (Message Passing Interface).

1We are talking of main memory. Processor registers, caches, or hard discs are not considered as main memory.

7

SIGGRAPH 2000 course on ”Rendering and Visualization in Parallel Environments”

2.4.2 Threading

A more recent parallel programming paradigm is the thread model. A thread is a control flow entity in a process. Typically, a
sequential process consists of one thread; more than one thread enable a concurrent (parallel) control flow. While the process
provides the environment for one or more threads – creating a common address space, a synchronization and execution context –
the individual threads only build a private stack and program counters. The different threads of a single process communicate via
synchronization mechanisms and via the shared memory.

In contrast to message passing, threading is only possible on multi-processor systems2 Moreover, multi-processor systems need
a shared memory architecture, in order to provide the same virtual address space.

Basically, there are three different kinds of implementations for threads. There is a user thread model, a kernel thread model,
and a mixed model. The user thread model is usually a very early implementation of a thread package. All thread management is
handled by the thread library; the UNIX kernel only knows the process, which might contain more than one thread. This results
in the situation that only one thread of a process is executed at any particular time. If you are using threads on a single processor
workstation, or your threads are not compute-bound, this is not a problem. However, on a multi-processor system, we do not really
get a concurrent execution of multiple threads of one process. On the other hand, this implementation model does not require a
modification of the operating system kernel. Furthermore, the management of the threads does not require any kernel overhead. In
Pthread terminology, this model is called all-to-one-scheduling.

In contrast to user threads, each kernel thread3 is known to the operating system kernel. Consequently, each kernel thread
is individually scheduleable. This results in a real concurrent execution on a multi-processor, which is especially important for
compute-bound threads. However, allocation and management of a kernel thread can introduce significant overhead to the kernel,
which eventually might lead to a bad scaling behavior. Pthread terminology denotes this model to be one-to-one-scheduling.

As usual, the best solution is probably a mixed model of user and kernel threads. The threads are first scheduled by the thread
library (user thread scheduling). Thereafter, the threads scheduled by the library are scheduled as kernel threads. Threads that are
not compute-bound (i.e., performing I/O) are preempted by the scheduling mechanism of the library, while only compute-bound
threads are scheduled by the kernel, thus enabling high-performance concurrent execution. In Pthread terminology, this model is
called the many-to-one or some-to-one scheduling.

To summarize, the main advantages of threads over message-passing is the fast communication and data exchange using the
shared memory – no messages need to be explicitly send to other execution entities – and the cheap/fast context switch between
different threads of one process. This is due to the shared address space, which is not changed during a thread switch. These
features can be used to control the concurrent flow of the job at a much tighter level as which message-passing. On the other side,
the use of threads is limited to (virtually) shared memory systems4.

2.5 Example Architectures

Additional material - white papers and technical reports from Hewlett Packard, SUN, and SGI - describing more details of the
archtiectures is available on the SIGGRAPH 2000 course CD-ROM.

Crossbar

Memory

I/O

System
Controller

CPU

CPU

CPU

CPU

Node Board 4

M
E

M

CPU

CPU

Node Board 7

M
E

M

CPU

CPU

Node Board 3

M
E

M

CPU

CPU

Node Board 0

M
E

M

CPU

CPU
....

....

Gigaplane Bus or XB Crossbar

(a) (b)

Figure 4: (a) Basic Sun Enterprise 450 architecture; (b) Basic Sun x500 and E10000 series architecture.

2There are some thread models which run on distributed memory systems, or even on workstation clusters. However, there is usually no access
to a shared memory, thus limiting communication severely.

3On Solaris systems a kernel thread is called a light-weight process (LWP), on SGI systems a sproc. In a way, a LWP or sproc is the physical
incarnation of the logical concept of a thread.

4Some thread packages actually run also on distributed memory systems or even on clusters. However, data exchange and synchronization is
significantly slower on these simulated shared memory systems than on “real” shared memory systems.

8

SIGGRAPH 2000 course on ”Rendering and Visualization in Parallel Environments”

Sun Enterprise Architectures

Figure 4a gives an overview of the Sun Ultra Enterprise 450 architecture [79]. Up to four processors are connected via a crossbar
to the UMA memory system and to the I/O system. The processors are managed via the system controller.

In contrast to the SUN 450, the X500 series [81] can combine up to 30 CPUs, which are connected via a two level interconnect
(see Figure 4b). Two CPUs are organized together with 2GB of memory on each of the up to eight node boards and communicate
through the lower level crossbar interconnect. Other boards (instead of a CPU node board) contain I/O functionality. All these
boards are connected via a bus (Gigaplane system bus) or a crossbar (Gigaplane XB Crossbar).

Similar to the x500 series, the E10000 (Starfire) [80] is a two level hierarchy which can combine up to 64 CPUs (see Figure 4b).
In contrast to the node boards of the X500 series, up to four CPUs, 4GB of memory, and I/O hardware are combined on each of
the up to 16 system boards which are connected via a crossbar (Sun’s UPA). All system boards are connected via the higher level
crossbar (Gigaplane XB).

On Sun workstations/servers, pthreads are available as mixed model implementation (Solaris 2.5 and above). OpenMP has been
endorsed by SUN and third party compiler (KAI) are available.

Hewlett-Packard Architectures

I/O

Memory

Memory Bus

CPUCPU ...
Memory MC

I/OSystem Bus 0

I/OSystem Bus 1

CPUCPU

BC

CPUCPU

BC

CPUCPU

BC

CPUCPU

BC

(a) (b)

Figure 5: (a) Basic HP D-class/J-class architecture; (b) Basic HP N-class architecture; MC - Memory Controller, BC - Bus Con-
verter.

In Figure 5a, the basic architecture of K-class, D-class and J-class architecture of Hewlett-Packard is shown. Up to two processors
for D/J-class systems, and up to six processors for the K-class systems are connected via the memory bus to the UMA memory
system and the I/O system . Similar to this architecture, the K-class servers can connect up to six processors.
The L-class system architecture is slightly different, since the memory and the I/O controller are connected via the Memory Con-
troller (MC).

Last year, HP released the N-class which provides up to eight processors [54]. The CPUs are connected via two buses, each
running at 1.9 GB/s. The buses are connected via the memory controller which accesses the UMA-memory banks. Overall,
this architecture looks like two K-class systems connected via the memory controller which acts similar like a two way crossbar
(Figure 5b).

The enterprise server class V2600 provides up to 32 CPUs connected via the Hyperplane crossbar [53]. The memory is imple-
mented as UMA model, which is also accessed via the crossbar. Four CPUs are clustered together to share the I/O and communicate
via a data agent with the crossbar (Figure 6a). Up to four 32 CPU cabinets of V2600s can be connected via a toroidal bus system5

(called Scalable Computing Architecture (SCA)) to implement an up to 128 CPU system as a cache-coherent NUMA model.
On HP-UX 11.x, pthreads are available as kernel model. Older versions implement a user model. Hewlett-Packard uses third

party OpenMP tools (KAI).

SGI Architecture

In 1999 SGI introduced two PC class servers, which combine either up to two CPUs (1200) or up to four CPUs (1400). Both are
providing Linux (L) and Windows NT environments. While NT provides only sparse parallel support, Linux has a rich variety

5A toroidal bus connects neighbors not only along one, horizontal bus direction, but also in a vertical direction. I guess that this technology (as
many other stuff) is inherited from the Convex Exampler architecture.

9

SIGGRAPH 2000 course on ”Rendering and Visualization in Parallel Environments”

....

Hyperplane Crossbar

CPU CPU CPU CPU

I/O

Agent

CPU CPU CPU CPU

I/O

Agent

Memory

....

Crossbar

Graphics

I/O

C
P

U

C
P

U

Memory

(a) (b)

Figure 6: (a) Basic HP Vclass architecture; (b) Basic SGI Octane architecture.

of tools for parallel programming. Pthreads are implemented on (probably) all recent distribution using a kernel model. OpenMP
compilers are provided by third party providers, such as KAI.

The processor boards of the SGI Octane architecture contain up to two processors and the UMA memory system [110]. These
boards are connected via a crossbar with the Graphics system and the I/O system (Figure 6b).

Hub I/O

Memory

CPUCPU

Hub

CPUCPU

Memory

I/O

CPU CPU

M E M

Hub

CPU CPU

M E M

HubCrossbar

CPU CPU

M E M

Hub

CPU CPU

M E M

HubCrossbar

Router Router

I/O

I/O

(a) (b)

Figure 7: (a) Basic SGI Origin 200 architecture; (b) Basic SGI 2x00 architecture.

In contrast to the SGI Octane, no crossbar is used as main interconnect for the SGI Origin200 architecture [64]. The single tower
configuration (up to two processors) connects the processors with the UMA memory system and the I/O system via a hub intercon-
nect. For the four processors configuration, a “Craylink” interconnect links two two processors towers system to a Non-Uniform
Memory Access (NUMA) system (Figure 7a). In the case of the Origin200, a cache-coherent NUMA scheme is implemented, in
order to provide a consistent memory view for all processors.

The SGI 2x00 architecture (formerly known as Origin 2000) is based on a interconnection fabric of crossbars and routers [64,
111]. It is constructed from node boards, which consist of two CPUs, a memory module, and a crossbar (hub) which interconnects
the node board components with the other system components. Each node board is connected (via the hub) with the XBOW crossbar
with another node board and I/O boards (Figure 7)b. Furthermore, each node board is connected with a router, which connects to
the interconnect fabric to other routers and node boards, where the node boards which are connected to the same XBOW crossbar
are not connected to the same router ((Figure 7b). The 2x00 series also implements a cache-coherent NUMA scheme, in order to
provide a consistent memory view for all processors.

Pthreads are available for IRIX 6.3 and above, where pthreads are available as patch set for IRIX 6.2. On all implementations, a
mixed model is used. The MIPSpro compiler version 7.3 supports C/C++ OpenMP.

3 Parallel Programming

3.1 Concurrency

There are some differences between programming of sequential processes and concurrent (parallel) processes. It is very important to
realize that concurrent processes can behave completely differently, mainly because the notion of a sequence is not really available
on process level of thread-parallel process, or the overall parallel process of a message-passing parallel program. However, the

10

SIGGRAPH 2000 course on ”Rendering and Visualization in Parallel Environments”

Vendor/Model CPU(s) [N]UMA Interconnect (peak performance)Max. Memory
Sun/Enterprise 450 1-4 @400 MHz (US II) UMA crossbar @1.78 GB/s 4 GB
Sun/Enterprise x500 1-30 @400 MHz (US II) NUMA bus @3.2 GB/s 8 GB

or crossbar @12.8 GB/s
Sun/Enterprise 10000 1-64 @400 MHz NUMA crossbar @12.8 GB/s 64 GB
HP/J Class J7000 1-4 @440 MHz (PA8500) UMA bus @2 GB/s 8 GB
HP/D Class D390 1-2 @240 MHz (PA8200) UMA bus @960 MB/s 3 GB
HP/L Class L2000 1-4 @440 MHz (PA8500) UMA bus @1.3 GB.s 8 GB
HP/K Class K580 1-6 @240 MHz (PA8200) UMA bus @960 MB/s 8 GB
HP/N Class 4000 1-8 @552 MHz (PA8600) UMA 2 x bus @1.9 GB/s 16 GB
HP/V class V2600 1-32 @552 MHz (PA8600) UMA crossbar @ 15.3 GB/s 32 GB
SGI/1200L 1-2 @700 MHz (PIII) UMA PC bus 2 GB
SGI/1400L 1-4 @500 MHz (PIII Xeon) UMA PC bus 4 GB
SGI/Octane 1-2 @300 MHz (R12000) UMA crossbar @1.6 GB/s 4 GB
SGI/Origin 200 1-2 @270 MHz (R12000) UMA crossbar @1.28 GB/s 2 GB

4 @270 MHz (R12000) NUMA crossbar/bus @1.28 GB/s 4 GB
SGI/2100,2200 2-8 @300MHz (R12000) NUMA crossbar fabric @6.24 GB/s 16 GB
SGI/2400 2-64 @300MHz (R12000) NUMA crossbar fabric @49.9 GB/s 128 GB

Table 3: Systems overview.

notion of a sequence is available on thread level, which compares to an individual process of a parallel message-passing program.
We denote this level of threads or individual processes as level of processing entities.

First of all, theorder of sequential processes (race conditions)is determined at all times. In parallel processes, however, it is
not. There are usually no statements which control the actual order processing entities are scheduled. Consequently, we cannot tell
which entity will be executed before an other entity.

Second –critical sections. A sequential process does not need to make sure that data modifications are complete before the data
is read in another part of the process, because a sequential process only performs one statement at a time. This is different with
concurrent processes, where different processing entities might perform different statements at virtually the same time. Therefore,
we need to protect those areas, which might cause inconsistent states, because the modifying thread is interrupted by a reading
thread. These areas are called critical sections. The protection can be achieved by synchronizing the processing entities at the
beginning of these critical sections.

Third – error handling . Another difference is error handling. While UNIX calls usually return an useful value, if execution
was successful, a potential error code is returned to the general error variableerrno . This is not possible using threads, because
a second thread could overwrite the error code of a previous thread. Therefore, most pthread calls return directly an error code,
which can be analyzed or printed onto the screen. Alternatively, the string library function
char* strerror(int errno);
returns an explicit text string according to the parametererrno .

This problem does not really affect message-passing processes, because the processing entities are individual processes with a
“private” errno . However, most message-passing calls return an error code.

A. Message Passing

In this part of the course, we briefly introduce two message-passing libraries. First we discuss the Message-Passing Interface library
- MPI [41, 42], followed by the Parallel Virtual Machine library – PVM [44, 9]. A comparison of these libraries can be found in
an article by G. Geist et al. [45]. All these papers can be found on the web, either at netlib, or at the respective homepages of the
libraries (see Appendix).

Generally, MPI was designed for message-passing on multi-processors, while PVM was originally intended for message-passing
within a heterogeneous network of workstations (NOW, clusters). Based on these different concepts, MPI has a strong emphasis
on portability (a MPI-based application can be compiled on any system) and highly optimized performance, but it provides only
a very limited functionality for session management (MPI 2.0 supports functions to spawn processes from a parent process). In
contrast, PVM emphasizes interoperability (PVM processes are supposed to communicate with processes build on completely
different machines) using the concept of a virtual machine. This requires dynamic resource management – to compensate for the
possible failure of system components – to build fault-tolerant applications.

3.2 Message Passing Interface – MPI

MPI 1 (1994) (and later MPI 2 (1997)) is designed as a communication API for multi-processor computers. Its functionality is
usually implemented using a communication library of the vendor of the machine. Naturally, this vendor library is not portable to

11

SIGGRAPH 2000 course on ”Rendering and Visualization in Parallel Environments”

other machines. Therefore, MPI adds an abstraction level between the user and this vendor library, to guarantee the portability of
the program code of the user.

Although MPI does work on heterogeneous workstation clusters, its focus is on high-performance communication on large
multi-processors [45]. This results in a rich variety of communication mechanisms. However, the MPI API lacks dynamic resource
management, which is necessary for fault tolerant applications.

In the following sections, we introduce the main components of MPI. Furthermore, we briefly explain some MPI functions,
which are used in the PVR system, which is presented in the re-print section of these course notes.

3.2.1 Process Topology and Session Management

To tell the truth, their is no real session management in MPI. Each process of a MPI application is started independent from the
others. At some point, the individual processes are exchanging messages, or are synchronized at a barrier. Finally, they shut-down,
thus terminating the application. The distribution of the individual processes to the different processing entities (i.e., processors of
a multi-processor) is handled by the underlying vendor library.

� int MPI Init(int *argc, char ***argv); - inializes process for MPI.

� int MPI Finalize(void); - releases process from MPI.

Furthermore, the user can specify the process topology within a group (see Section 3.2.2). Besides creating a convenient name
space, the specification can be used by the runtime system to optimize communication along the physical interconnection between
the nodes[41].

3.2.2 Grouping Mechanisms

A special feature of MPI is support for implementing parallel libraries. Many functions are provided to encapsulate communication
within parallel libraries. These functions define a group scope for communication, synchronization, and other related operations of
a library. This is done by introducing the concepts of communicators, contexts, and groups.

Communicators are the containers of all communication operations within MPI. They consist of participants (members of groups)
and a communication context. Communication is either between members of one group (intra-communication), or between mem-
bers of different groups (inter-communication). While the first kind of communication provides point-to-point communication and
collective communication (i.e., broadcasts), the second kind only allows point-to-point communication. After initializing MPI for
a process, two communicators are predefined. The MPICOMM WORLD communicator includes all processes which can com-
municate with the local process (including the local process). In contrast, the MPICOMM SELF communicator only includes the
local process.

A group defines the participants of communication or synchronization operations. They define a unique order on their
members, thus associating a rank (identifier of member within the group) to each member process. The predefined group
MPI GROUPEMPTY defines an empty group.

The following functions provide information on a group or its members.

� int MPI Comm size(MPI Comm com, int* nprocess);- returns the number of participating processes of communicator
com.

� int MPI Comm rank(MPI Comm com, int* rank); - returns rank of calling process.

A context defines the “universe” of a communicator. For intra-communicators, they guarantee that point-to-point communication
does not interfere with collective communication. For inter-communicators, a context only insulates point-to-point communication,
because collective operations are not defined.

3.2.3 Communication

There are two different communication methods. Group members can be either communicate pair-wise, or they can communicate
with all members of the group. The first method is called point-to-point communication, the second method is called collective
communication. Furthermore, a communication operation can be blocking (it waits until the operation is completed) or non-
blocking (it does not wait).

Point-To-Point Communication

This class of communication operation defines communication between two processes. These processes can be either members
of the same group (intra-communication), or they are members of two different groups (inter-communication). However, we only
describe systems with one group (all processes). Therefore, we only use intra-communication.

Usually, a message is attached to a message envelope. This envelope identifies the message and consist of the source or destina-
tion rank (process identifier), the message tag, and the communicator.

For blocking communication, the following functions are available:

12

SIGGRAPH 2000 course on ”Rendering and Visualization in Parallel Environments”

� int MPI Send(void *buf, int n, MPI Datatype dt, int dest, int tg, MPI Comm com); - sends the buffer buf, containing n
items of datatype dt to process dest of communicator com. The message has the tag tg.

� int MPI Recv(void *buf, int n, MPI Datatype dt, int source, int tg, MPI Comm com); - receives the message tagged with
tg from process source of communicator com. The used buffer buf consist of n items of the datatype dt.

These functions are specifying thestandardblocking communication mode, where MPI decides if the message is buffered. If
the message is buffered by MPI, the send call returns without waiting for the receive post. If the message is not buffered, send
waits until the message is successfully received by the respective receive call. Besides thisstandard mode, there arebuffered,
synchronous, andready modes. More information on these modes can be found in the MPI specification papers[41, 42].

For non-blocking communication MPIIsend and MPIIrecv are provided forintermediate(I) communication. Forbuffered,
synchronous, or readycommunication modes, please refer to the MPI papers. After calling these functions, the buffers are send (or
set while receiving). However, they should not be modified until the message is completely received.

� int MPI Isend(void *buf, int n, MPI Datatype dt, int dest, int tg, MPI Comm com, MPI Request* req); - sends the
buffer buf, contain n items of datatype dt to process dest of communicator com. The message has the tag tg.

� int MPI Irecv(void *buf, int n, MPI Datatype dt, int source, int tg, MPI Comm com, MPI Request* req); - receives the
message tagged with tg from process source of communicator com. The used buffer buf consist of n items of the datatype dt.

In addition to the blocking send and receive, the request handle req is returned. This handle is associated with a communication
request object – which is allocated by these calls – and can be used to query this request using MPIWait.

� int MPI Wait(MPI Request* req, MPI Status *stat); - waits until operation req is completed.

The last call we describe for point-to-point communication is MPIProbe. This call checks incoming messages if they match the
specified message envelope (source rank, message tag, communicator), without actually receiving the message.

� int MPI Iprobe(int source, int tg, MPI Comm com, int* flag, MPI Status* stat); - checks incoming messages. The result
of the query is stored in flag.

If flag is set true, the specified message is pending. If the specified message is not detected, flag is set to false. The source
argument of MPIIprobe may be MPIANY SOURCE, thus accepting messages from all processes. Similarly, the message tag
can be specified as MPIANY TAG. Depending on the result of MPIIprobe, receive buffers can be allocated and source ranks and
message tags set.

Collective Communication

Collective Communication is only possible within a group. This implements a communication behavior between all members of
the group, not only two members as in point-to-point communication.

We concentrate on two functions:

� int MPI Barrier(MPI Comm com); - blocks calling process until all members of the group associated with communicator
com are blocked at this barrier.

� int MPI Bcast(void *buf, int n, MPI Datatype dt, int root, MPI Comm com); - broadcasts message buf of n items of
datatype dt from root to all group members of communicator com, including itself.

While the first call synchronizes all processes of the group of communicator com, the second call broadcasts a message from
group member root to all processes. A broadcast is received by the members of the group by calling MPIBcast with the same
parameters as the broadcasting process, including root and com. Please note that collective operations should be executed in the
same order in all processes. If this order between sending and receiving broadcasts is changed, a deadlock might occur. Similarly,
the order of collective/point-to-point operation should be the same too.

3.3 Parallel Virtual Machine – PVM

Generally, a parallel application using the current PVM 3 is split into a master process and several slave processes. While the slaves
perform the actual work of the task, the master distributes data and sub-tasks to the individual slave processes. Finally, the master
synchronizes with all slaves at a barrier, which marks the end of the parallel processing.

Before starting the parallel sessions, all designated machines of the cluster need to be announced in ahostfile. Furthermore,
PVM demons must run on these machines. These PVM demons (virtual machines) are shut down, once the parallel sessions are
completed.
After the initialization, the master starts its execution by logging on to the running parallel virtual machine (PVM demon). There-
after, it determines the available hardware configuration (number of available machines (nodes), ...), allocates the name space for
the slaves, and starts these slaves by assigning a sub-task (program executable). After checking if all slaves are started properly,
data is distributed (and sometimes collected) to the slaves.
At the end of the parallel computation, results are collected from the slaves. After a final synchronization at a common barrier, all
slaves and the master log off from the virtual machine.

Next, we briefly introduce some commands for the process control. Furthermore, we introduce commands for distributing and
receiving data. For details, please refer to the PVM book[44].

13

SIGGRAPH 2000 course on ”Rendering and Visualization in Parallel Environments”

PVM Process Control

� int pvm mytid(void); - logs process on to virtual machine.

� int pvm exit(void); - logs process off from virtual machine.

� int pvm config(int* nproc,) - determines number of available nodes (processes), data formats, and additional host infor-
mation.

� int pvm spawn(char *task, ...)- starts the executable task on a machine of the cluster.

� int pvm joingroup(char *groupname); - calling process joins a group. All members of this group can synchronize at a
barrier.

� int pvm lvgroup(char *groupname); - leaving the specified group.

� int pvm barrier(char *groupname); - wait for all group members at this barrier.

� int pvm kill(int tid) - kill slave process with identifier tid.

PVM Communication

� int pvm initsend(int opt) - initializes sending of a message.

� int pvm pkint(int* data, int size, ..); - encodes data of type int6 for sending.

� int pvm send(int tid, int tag, ..); - sends data asynchronous (does not wait for an answer) to process tid with specified tag.

� int pvm bcast(char* group, int tag); - broadcasts data asynchronously to all group members.

� int pvm mcast(int* tids, int n, int tag); - broadcasts data synchronously ton processes listed intids.

� int pvm nrecv(int tid, int tag); - non-blocking (does not wait if message has not arrived yet) receiving of message.

� int pvm recv(int tid, int tag); - blocking receiving of messagetag.

� int pvm upkint(int* data, int size, ..); - decodes received data of type int.

There is only one active message buffer at a time. This determines the order of initialization, coding, and sending of the message.

B. Thread Programming

As already pointed out in Section 2.4.2, shared memory can be used for fast communication between the processing entities. Two
different approaches are available to provide a higher-level and a lower-level of programming of parallel applications. In the next
sections, we will outline OpenMP and pthreads as basic parallel programming approaches with a coarse grain/high-level and a fine
grain/low-level parallel control.

3.4 OpenMP versus Pthreads

OpenMP and pthreads provide tools for parallel programming based on shared memory and the thread model. While OpenMP
provides a somewhat higher-level of programming and a coarser grain of parallel control, it is easier to use than pthreads. On other
hand, pthreads provide more flexibility and a better parallel control for fine grain parallel problems. Moreover, pthreads are not
necessarily focusing on parallel computer systems; pthreads are already worthwhile to consider for multi-threaded application on
single-processor systems to utilize I/O idle time.

The better direct control often leads to a better performance of the parallel application. To achieve similar performance with
OpenMP, the parallel compiler directives – expecially the memory clauses – need to be tuned manually.

Finally, OpenMP is frequently implemented on top of a thread implementation of the specific systems. Therefore, its performance
depends on used thread implementation.

6There are commands for other data types, such as byte, double, as well.

14

SIGGRAPH 2000 course on ”Rendering and Visualization in Parallel Environments”

3.5 OpenMP

OpenMP is a vendor initiated specification to enable basic loop-based parallelism in Fortran (77 and up), C, and C++. It basically
consists of compiler directives, library routines, and environment variables. More information on the history of OpenMP can be
found in the OpenMP list of Frequently Asked Questions (FAQ) [14].

Currently, OpenMP is available for a variety of platforms. Some platforms are supported by vendor-native efforts (i.e., SGI),
others by third party products. Check the OpenMP website for any details (http://www.openmp.org).

In this course, we can only give an overview of OpenMP. Information on how to use OpenMP with C or C++ can be found in the
OpenMP Tutorial at SuperComputer 1998 conference [29] and in the “OpenMP Application Programming Interface” (API) [13].
Both documents can be found at http://www.openmp.org.

3.5.1 Execution Model

An OpenMP parallel process starts with a master thread executing the sequential parts of the process (sequential region). Once, the
master thread arrives at a parallel construct, it spawns ateam of threadswhich process the data associated with the parallel construct
in parallel. How the workload is distributed to the different threads of the team and how many threads can be in the team is usually
determined by the compiler. However, these numbers can be modified in a controlled way by calling specific library functions.
Finally, an implicit barrier at the end of the parallel constructs usually synchronizes all threads, before the master thread continues
processing the sequential parts of the program.

3.5.2 Parallel Programming with OpenMP

Several constructs are available for parallel programming. These constructs enable parallel programming, synchronization, a spec-
ified concurrent memory view, and some control on how many threads can be used in a team. A subset of these constructs is
presented in this section. For more details, see the OpenMP C/C++ API [13].

Compiler Directives

� #pragma omp parallel [<clauses>] {...} specifies a parallel region in which a team of threads is active. The
clauses declare specific objects to be shared or to be private.

� #pragma omp parallel for {...} constructs enable loop parallel execution of the subsequent for loop. The work-
load of this loop is distributed to a team of threads based on the for-loop iteration variable. This construct is actually a shortcut
of a OpenMP parallel construct containing an OpenMP for construct.

� A sequence of#pragma omp section {...} constructs – embraced by a#pragma omp parallel construct –
specifies parallel sections which are executed by the individual threads of the team.

� #pragma omp single {...} specifies a statement or block of statements which is only executed once in the parallel
region.

� #pragma omp master {...} specifies a statement or block of statements which is only executed by the master thread
of the team.

� #pragma critical [(name)] {...} specifies a critical section – named with an optionalname – of a parallel
region. The associated statement(s) of the critical sections with the same name are only executed sequentially.

� #pragma omp atomic <statement> ensures an atomic assignment in an expression statement.

� #pragma omp barrier synchronizes all threads of the team at this barrier. Each thread which arrives at this barrier waits
until all threads of the team have arrived at the barrier.

� #pragma omp flush [(<list>)] ensures the same memory view to the objects specified inlist . If this list is
empty, all accessible shared objects are flushed.

Other compiler directives or clauses in combination with the compiler directives introduced above can be used to define specific
memory handling, scheduling, and other features. Specifically,shared(<list>) defines are shared memory scope for the
variables listed in<list> andprivate(<list>) a private scope respectively. Especially in a loop context, a reduction can be
very useful:reduction(<op>:<list>) . In the following matrix product example, theprivate andreduction clauses
are used to improve the performance in contrast to the default shared memory scope. Depending on the size of the matrices, the
parallel performance without the additional private or reduction clauses can be even worse than the sequential performance.

for (i=0; i<N; i++) {
for (j=0; j<N; j++) {

tmp = 0.0;
#pragma omp for private(k) reduction(+:tmp)
// #pragma omp for might even deteriorate performance

15

SIGGRAPH 2000 course on ”Rendering and Visualization in Parallel Environments”

for (k=0; k<N; k++) {
tmp += A[i][k] * B[k][j];

}
C[i][j] = tmp;

} }

Library Functions

In addition to the various compiler directives, library functions can be used to affect the number of threads in a team or to determine
specific information on the current parallel system. To use these functions, the header fileomp.h must be included. Using the SGI
MIPSpro 7.3 C/C++ compiler requires the use of the following option in order to generate OpenMP code:-mp -MP:openmp=ON.

� omp_set_num_threads(int num_threads); andint omp_get_num_threads(void); are available to set
or to determine the number of threads in a team in the closest enclosing parallel region.

� int omp_get_num_procs(void) determines the number of available processors that can be assigned to the process.

� int omp_in_parallel(void) returns a non-zero integer if called in a parallel region. Otherwise, it returns zero.

� void omp_init_lock(omp_lock_t *lock} , void omp_destroy_lock(omp_lock_t *lock) ,
void omp_set_lock(omp_lock_t *lock) , void omp_unset_lock(omp_lock_t *lock) , and
void omp_test_lock(omp_lock_t *lock) specify the use of a locking mechanism similar to a mutex.

4 Pthread Programming

There are quite a number of thread models around, like the mthread package[120] of the University of Erlangen-N¨urnberg, the dots
package[11] of the University of T¨ubingen, the Compiler-Parallel-Support package of HP/Convex. There are NT-threads, Solaris-
threads, and last but not least there is the IEEE POSIX thread standard (pthreads). In this course, we will focus only on pthreads.
Furthermore, all the examples are tested on SGI’s implementation of pthreads (available for IRIX 6.x and up).

The pthread standard defines an “Application Programming Interface” (API), as specified by POSIX standard 1003.l, or more
specific: ISO/IEC 9945-1:1996 (ANSI/IEEE Std 1003.1, 1996 Edition). However, this standard does not define a particular imple-
mentation of this standard. Therefore, many definitions are opaque to the user, i.e., thread mapping, data types, etc...

The following text only gives a more or less brief introduction into pthread programming. Advanced features like real-time
scheduling or attribute objects are only briefly mentioned or even completely ignored. For a more complete introduction into those
topics, please refer to the books [15, 91, 69, 61, 94] listed in Section 6.9.3.

4.1 Controlling Pthreads

In this part, we discuss the life cycle of a pthread. The life cycle starts with the creation of the pthread, its work, and the end of its
existence.

To start the life of a pthread, we need to execute thepthread_create command:

int pthread_create(pthread_t *pthread_id,const pthread_attr_t* ptr,
void* (*thread_routine) (void *),void *arg);

where

� pthread_id is the returned identifier of the created pthread,

� pthread_attr_t is the passed attribute structure. If NULL is passed, the default attributes are used.

� thread_routine is the name of the function which is called by the created pthread, and

� arg is a pointer to the parameter structures for this pthread.

If this function returns error code 0, it was successful. If an error was encountered, the return code specifies the encountered
problem.

If a pthreads needs to know its identity, this identity can be established using the call

pthread_t pthread_self(void);

where the pthread identifier of the current pthread is returned. However, the pthread identifier of another pthread is only known
by its caller. If this information is not passed to the particular pthread, this pthread does not know the identifier of the other pthread.

Similar to the last call,

int pthread_equal(pthread_t t1,pthread_t t2);

16

SIGGRAPH 2000 course on ”Rendering and Visualization in Parallel Environments”

determines if two pthread identifiers are referring to the same pthread. Ift1 is equalt2 a nonzero value will be returned
(“True”); if they are not equal, zero will be returned (“False”).

The life of a pthread usually terminates with a

int pthread_exit(void *ret_val);

call. Although the pthread is terminated, the resources used by this pthread are still occupied, until the pthread is detached.
Using the command

int pthread_detach(pthread_tpthread_id);

explicitly detaches a pthread, telling the operating system that it can reclaim the resources as soon as the pthread terminates.
If a pthread A needs to wait for termination of pthread B, the command

int pthread_join(pthread_t pthreadB_id, void **ret_val);

can be used. As soon as pthread B terminates, it joins pthread A, which is waiting at thepthread_join command. If pthread
B is returning a result using the pointerret_val , this pointer is accessible viaret_val of thepthread_join command. If
ret_val is set to NULL, no return value will be available.pthread_join implicitly detaches the specified pthread.

An example for pthread creation can be found as listing 1 in Section 4.4.1.

4.2 Pthread Synchronization

One of the most important topics in thread programming is synchronization. Different resources (i.e., variables, fields, etc.) are
shared by different threads. Therefore, the access to these resources needs to be protected. Usually, this protection for MUTual
EXclusion is done by a mutex. However, other synchronization mechanisms are known, such as conditions and barriers.

4.2.1 Mutex Synchronization

A mutex protects a critical section in a program. Considering a scenario, where rendering information is stored in a special data
structure – i.e., a FIFO queue –, and two threads try to read information from that data structure, obviously, the access to this data
structure is a critical section and the access must be limited to one thread at the time. Therefore, the data structure must be protected
by a mutex.

Initialization

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

int pthread_mutex_init(pthread_mutex_t *mutex,pthread_mutexattr_t *attr);

int pthread_mutex_destroy(pthread_mutex_t *mutex);

After memory allocation of the mutex structure, it must be initialized. For static allocation, we can simply assign the preprocessor
macroPTHREAD_MUTEX_INITIALIZER to the mutex.

In most cases, however, we dynamically allocate a mutex. For these cases, we can usepthread_mutex_init to initialize
the allocated mutex structure. The second parameter of this command is used to specify a mutex attribute object. This attribute
object is not frequently used. Therefore, we passNULL.

If no pthread is locking the mutex, we can destroy it usingpthread_mutex_destroy before releasing the mutex structure
memory. If the mutex is statically allocated and initialized, the explicit destruction of the mutex is not necessary.

Using a Mutex

int pthread_mutex_lock(pthread_mutex_t *mutex);

int pthread_mutex_trylock(pthread_mutex_t *mutex);

int pthread_mutex_unlock(pthread_mutex_t *mutex);

Before entering a critical section in a parallel program, we need to lock the associated mutex usingpthread_mutex_lock .
If the mutex is already locked, the current pthread will be blocked, until the mutex is unlocked by the other pthread. The behavior
if a pthread tries to lock a mutex which is already locked by the very same pthread is not defined. Either an error code will be
returned, or this pthread will end up in a deadlock.

In case you do not want to wait on an already locked mutex, you can usepthread_mutex_trylock . This call returns
EBUSYin case that the specified mutex is already locked by another pthread. At the end of a critical section you need to unlock the
locked mutex usingpthread_mutex_unlock .

An example for pthread mutexes can be found as listing 2 in Section 4.4.2.

17

SIGGRAPH 2000 course on ”Rendering and Visualization in Parallel Environments”

Semaphores

Semaphores is a concept which is more or less a generalization of a mutex. While a mutex only is a binary representation of the
state of a resource, a semaphore can be used as a counter (“counting semaphores”). Although the pthread standard does not specify
semaphores, the POSIX semaphores can be used.

4.2.2 Condition Synchronization

While mutexes protect a critical section of a program, conditions are used to send messages on the state of shared data. Considering
the classic user/producer problem, the producer signals a condition to the users that it has produced data which can be digested by
the users.

Dave Butenhof[15] says that

“Condition variables are for signaling, not for mutual exclusion.”

Initializing

pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

int pthread_cond_init(pthread_cond_t *cond,pthread_condattr_t *condattr);

int pthread_cond_destroy(pthread_cond_t *cond);

Similar to the mutex initialization, static and dynamic allocated condition structures need to be initialized using the respective
commands. For our use, we always pass NULL to thecondattr parameter. Further discussion of the attribute features can be
found in Butenhof’s book[15].

After use, the condition structures need to be destroyed before releasing the associated memory.

Using conditions

int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex);

int pthread_cond_timedwait(pthread_cond_t *cond,pthread_mutex_t *mutex,struct timespec *exp);

int pthread_cond_signal(pthread_cond_t *cond);

int pthread_cond_broadcast(pthread_cond_t *cond);

Note that conditions are always associated with a mutex, where pthreads waiting on the same condition must use the very same
mutex. It is not possible to combine two mutexes with one condition, while it is possible to combine two (or more) conditions with
one mutex.

Before entering the wait stage usingpthread_cond_wait or pthread_cond_timedwait , the associated mutex must be
locked. This mutex is automatically unlocked while waiting on that condition and re-locked before leaving the wait stage. Similar,
a signaling pthread needs to lock the mutex before signaling the waiting pthread (see listing 3, Section 4.4.3).

If you consider a waiting pthread A and a signaling pthread B, A will lock the associated mutex mA before entering the wait
stage of condition cA. Immediately before blocking pthread A, the system unlocks mutex mA. Later, pthread B locks mutex mA
in order to signal pthread A the condition cA. The signal is received by pthread A, which tries to lock mutex mA. After unlocking
mutex mA by pthread B, pthread A locks mutex mA and returns from thepthread_cond_wait to the user’s code. Thereafter,
the user unlocks mutex mA.

Another important note is that pthreads might wake up without getting the proper signal for various reasons. Therefore, we need
to use a shared predicate which is set if there is a proper wake-up signal. If this predicate is not set, the waiting pthread will wait
again until it receives the proper signal.

In some situations it is useful to limit the waiting time by a timeout. In these cases, the maximum waiting time can be specified
by theexp parameter of thepthread_cond_timedwait command. It will return with the valueETIMEDOUTif the pthread
does not receive the expected signal within the timeout limit.

The pthread mechanism for waking-up pthreads waiting at a condition ispthread_cond_signal and
pthread_cond_broadcast . While the first one only wakes up the first pthread waiting at that condition, the latter
wakes up all pthreads waiting at that condition.

Please note, if no pthread is waiting at a condition, this condition will simply die away. Furthermore, if a pthread starts waiting
at this condition shortly after the wake-up signal/broadcast, it remains waiting for a signal which possibly never arrives.

An example for pthread conditions can be found as listing 3 in Section 4.4.3.

18

SIGGRAPH 2000 course on ”Rendering and Visualization in Parallel Environments”

4.2.3 Barrier Synchronization

The last presented synchronization concept is the barrier synchronization. Unfortunately, this concept is not part of the current
pthread standard (1996), but it is on the draft list for the next version.

Generally, a barrier synchronization stops threads at this barrier, until the specified number of threads arrive. Thereafter, all
threads proceed. There are different suggestions how to implement barriers in the current pthread standard. We will present two
examples of an implementation. The first one implements a barrier synchronization at the end of the life cycle of the threads by
joining them in a cascade (see listing 2 in Section 4.4.2). However, this method is not suited for a barrier synchronization which
is not at the end of the life cycle of the pthreads, but in the middle of the working program. In addition, it has some structural
limitations, because each pthreads in the cascade needs to know its successor’s pthread identifier.

The second example is from Dave Butenhof’s book on POSIX threads[15]. In this example, every pthread which waits at a
barrier is decrementing the waiting pthread counter and checks if more pthreads are expected to wait at this barrier. If no further
pthread is expected to wait, it broadcasts the other waiting pthreads that the appropriate number of pthreads arrived at the barrier. If
the number of waiting pthreads is not reached, this pthreads starts waiting for the broadcast. This implementation of a barrier can
be found as listing 4, Section 4.4.4.

4.3 Additional Topics

4.3.1 Concurrent Memory Visibility

As mentioned earlier, programming concurrent (parallel) systems is quite different from programming sequential systems. This is
especially true for the view of the memory we are using within our parallel program.

Modern processors are buffering data into caches of different sizes and different levels. If more than one processor is working
for one program, different caches are storing information. Therefore, the information visible by one processors (in its cache) might
be not the same as visible to another processor (in its cache or the main memory). This problem becomes even worse if NUMA
memory architectures are used, because checking for changes in different caches and different memory hierarchies is much more
difficult.

The pthread standard defines situations when the memory view of the different threads (possibly running on different processors)
is equal, providing that the memory has not changed after these commands.

� After starting pthreads (pthread_create), the started pthreads have the same memory view as their parent.

� After explicitly (pthread_mutex_unlock) or implicitly (conditions) unlocking mutexes, the pthreads which are blocked
at this mutex have the same memory view as the unlocking pthread.

� Furthermore, the memory view of terminated pthreads (canceled pthreads, exited pthreads, or simply returning from their
thread function) is the same as of the pthread which joins the terminating pthreads.

� Finally, each pthread which is waked-up by a signaling or broadcasting pthread has the same memory view as the signaling
or broadcasting pthread.

Apart from these situations, the same memory view cannot be guaranteed. Although you might never encounter this problems
on a particular system (it might be cache-coherent), you can never be sure.

4.3.2 Cancellation

int pthread_cancel(pthread_t pthread_id);

int pthread_setcancelstate(int state, int* ostate);

int pthread_setcanceltype(int type, int* otype);

void pthread_testcancel(void);

Usually, a thread is executing a particular part of the program until the task is done and the thread is either returning to its parent
thread (main thread), or exits. However, there are situations where the task of the thread becomes dispensable. In those cases, it is
useful to cancel this thread.

In general, we need the pthread identifier of the pthread to be canceled. Without this identifier, we cannot cancel the pthread. To
cancel a pthread, we callpthread_cancel(pthread_id); .

There are three different cancellation modes the user can choose from. First, there is the DISABLED mode, where the cancel
state is set to PTHREADCANCEL DISABLE (the value of the cancel type will be ignored). In this mode no cancellation is
possible. It becomes meaningful to prevent data corruption, while the pthread is changing data. In this cases, the pthread disables
cancellation until it has finished the modification. Thereafter, it enables cancellation again. Cancel requests issued while the
cancellation is disabled, are queued until the cancellation state is enabled again.

19

SIGGRAPH 2000 course on ”Rendering and Visualization in Parallel Environments”

If the cancellation state is set to PTHREADCANCEL ENABLE, we can choose from two cancellation types;
PTHREAD CANCEL DEFERRED (the default) or PTHREADCANCEL ASYNCHRONOUS. The second type indicates that
the respective pthread should be canceled at any time from now. This might cause data corruption, deadlocks – pthreads which
are locked at a mutex locked by the canceled pthread –, and so forth. This is really an emergency kind of cancellation. Better
is the first cancellation type, which asks the pthread to stop at the next cancellation point. At implicit cancellation points like
pthread_cond_wait , pthread_cond_timedwait , or pthread_join , the pthread cancel immediately after executing
these commands. However, an explicit cancellation point can be set usingpthread_testcancel . If a cancel request is pend-
ing, the pthread returns the value PTHREADCANCELED to a pthread which waits to join this pthread. If no cancel request is
pending, thepthread_testcancel command immediately returns. Besides these implicit or explicit cancellation points, there
are library calls or system calls which are implicit cancellation points. Generally, these calls can introduce some blocking behavior
and are therefore good candidates for cancellation. Please refer to one of the pthread books for a list of these calls.

Please note, enabling cancellation is not a cancellation point. Therefore, you need to explicitly set a cancellation point after
enabling cancellation.

Another feature of cancellation is the specification of an cleaning-up handler for the pthread to be canceled. This cleaning-up
handler can close files, release memory, repair data modifications, and so forth. Please refer to Butenhof’s book[15] for more
information on cleaning-up canceled pthreads.

4.3.3 Hints

In this section, we provide some tips and hints on common problems and usage of pthreads on some systems.

Debugging

� Thread races/race conditions.Never count on an execution order of pthreads. Generally, we cannot assume a certain exe-
cuting order of pthreads. The standard does not completely control the actual scheduling of the physical system. Furthermore,
after creation of a pthread, you cannot count that this pthread will start before another pthread created after the first pthread.

� Avoid potential deadlock situations.Well, this sounds obvious. However, there are many unavoidable situations which are
potential deadlock situations. If you use mutex hierarchies (lock one mutex after successfully locking a first mutex), you need
to consider a back-off strategy in case that the second mutex locking will block the pthread, which keeps the first mutex.

� Priority inversion. If you use real-time priority scheduling (see Section 4.3.4), your scheduling strategy (FIFO) might
schedule a pthread to run which tries to lock a mutex, locked by a pthread preempted by the first pthread. Mutual exclusion
and scheduling performing a kind of contradictory execution which can cause a deadlock.

� Sharing stacks.Pthread attributes (Section 4.3.4) enable the user to share stack memory. If the size of this stack is too small
for these pthreads, you will encounter some strange effects.

Performance

� Mutexesare not for free. You should always carefully decide if you use a “big mutex” protecting one big piece of code, or a
number of mutexes protecting more fine granularly critical sections.

� Concurrency Level Pthread implementations on UNIX98 conform systems (i.e., IRIX 6.5) provide
int pthread_setconcurrency(int npthreads); to advice the kernel how many kernel execution enti-
ties (kernel threads) should be allocated should be allocated for the pthread parallel process. However, some UNIX systems
do not require this call, because user mode and kernel mode scheduler are cooperating close enough (i.e., Digital UNIX).
int pthread_getconcurrency(void) returns the current level of concurrency.

� Pthreads on IRIX. The current implementation of pthreads on SGI workstations maps the pthreads on sproc light-weight
processes of the operating systems. Furthermore, the system/pthread library decides if it starts an additional sproc for an
additional pthread.
In my experience, this does not work very well. Therefore, you can tell the operating system/pthread library that
your pthreads are compute-bound, by setting the environment variablePT_ITC (setenv PTITC). This usually re-
sults in starting enough sprocs for all processors. More recent implementations of pthreads on IRIX (6.5) use
pthread_setconcurrency(<npthreads>); to advice the system how many kernel execution entities (kernel
threads) should be allocated (see above).

� Solaris threads. On Solaris 2.5, threads are not time-sliced. Therefore, we need to set the concurrency level
to the number of started threads, in order to obtain a concurrent program execution. The respective command is
thr_setconcurrency(<nthreads>); (see pthread concurrency level above).

I found a nice quote in Dave Butenhof’s book for those who are getting frustrated while debugging a concurrent program:

“Wisdom comes from experience, and experience comes from lack of wisdom.”

20

SIGGRAPH 2000 course on ”Rendering and Visualization in Parallel Environments”

4.3.4 Further topics

In this course, we do not provide material on all pthread topics. In my experience, I have never needed features like one-time
initialization, real-time scheduling, thread-specific data, thread attributes, and so forth. However, there are situations where you
might need this features. A discussion of these additional features can be found in Butenhof’s book[15].

4.4 Example Code

This part contains example code for pthread programming. Please note that we denote the thread which starts all other threads as
main thread. Naturally, this thread is considered as a pthread too. Furthermore, we use the term pthread for all threads started by
the main thread using the command pthreadcreate.

4.4.1 Initializing Pthreads

The pthread program listed listing 1, starts five pthreads and passes a couple of values to the pthreads. Finally, the main pthread
collects the pthread started first.

14, number of pthreads started (including the main thread).
16-19, type definition of parameter record passed to the started pthreads.
21-38, thread function which is executed by the started pthreads. The own pthread identifier is look up (27). After a short loop

(28), the thread function tests if the current pthread is the main thread (30). All pthreads created by the main thread are terminated
and return their number identifier (35).

48-63, PTHREADS - 1 pthreads are started and a parameter record containing two parameters are passed to the pthreads; the
current loop value (like a number identifier for the pthreads) and the pthread identifier of the main thread.

65-72, the four pthreads (PTHREADS - 2) started last are detached from the main thread. After their termination, their resources
are released to the operating system. If the main thread terminates before these pthreads, they terminate immediately (without
completing their thread function).

74, the main thread executes the thread function (like the other pthreads).
75-76, the main thread joins with the first pthread started (and implicitly detaches this pthread, 75). The return value of the

started pthread is returned in resp (75) and casted in (76).

4.4.2 Mutex Example

The pthread program listed listing 2, starts five pthreads and passes a couple of values to the pthreads. Each started pthread tries to
lock the mutex allocated and initialized by the main thread.

20-25, type definition of parameter passed to the pthreads.
27-63, thread function executed by the started pthreads. Each started pthread locks the shared mutex 100 times (32-557). After

locking (36), it performs a loop (43) and unlocks the mutex (44-49). Finally, each started pthread terminates using pthreadexit
(60). In contrast to the mutex locking of the main pthread (105), the pthreads are using trylock and count the unsuccessful tries
(38-41).

72-83, a common mutex is allocated (72-76) and initialized (78-83).
85-103, five pthreads are started and the respective data is passed to them (96).
105-117, the mutex is locked by the pthread (105-110). Please note that this mutex is not necessarily locked by the main thread

first. The pthread standard does not specify a scheduling/execution order (see 4.3.3 thread races). After successful locking, the
main thread executes a loop (111) and unlocks the mutex (112-117).

119-129, the main thread joins with all started pthread in the order they were created. If a pthread created later terminates
before an earlier pthread, it is not joined until all pthreads created earlier were joined. This is a cascade implementation of a
barrier. The main thread does not proceed until all started pthreads are joined. Please note that after the presented kind of barrier
synchronization, no pthreads are running anymore.

131-137, the mutex is released.

4.4.3 Condition Example

The pthread program listed listing 3, starts two pthreads and passes a couple of values to the pthreads. Finally, the main pthread
collects the started pthreads. The pthreads are alternating processing a shared variable using conditions to signal the state of the
variable to the pthread.

18-24, type definition of shared data passed to the pthreads.
26, shared data definition.
39-72, allocates and initializes mutex (43-51) and conditions (53-70).
74-113, producer pthread. After waiting for two seconds (82) in order to make sure that consumer pthread waits at the condition,

the producer locks the mutex (87-90), manipulates the shared data, setting the predicate to 0, marking that it has been processed by
the producer (91-92), and signals to the consumer that the shared data is ready to process (93-96). Thereafter, the producer waits
until the data is consumed by the consumer pthread (98-103). Each time the producer is waked up by a signal (99), it checks if the
predicate is correct. If not, it continues waiting (98,103). This is to prevent wrong wake-ups of the waiting pthread. After waiting

21

SIGGRAPH 2000 course on ”Rendering and Visualization in Parallel Environments”

of the pthread at this condition, the mutex is unlocked (107-110). Please note that while waiting for the signal (99), the mutex is
unlocked by the system and re-locked before returning to the user code.

115-151 consumer pthread. Similar to the producer pthread, the consumer locks the mutex (124-127) and waits at the condition
for the proper signal (128-133). If a wrong signal is received which waked-up the consumer, the predicate is not set properly.
Therefore, we continue waiting (128, 133). After successful receiving the proper signal, the consumer consumes the shared data
(135), sets the predicate (136), and signals the consumption to the producer pthread (139-142). Thereafter, it unlocks the mutex
(144-147) and continues waiting (124) for new data. Please note that the mutex is locked while producer/consumer are manipulating
the shared data. The mutex is released by the pthreads, while they are waiting at the condition. If the mutex is unlocked while
manipulating the data, a deadlock is usually the result, because the later signal might be received by the other pthread. Due to
scheduling, it is possible that the pthread just waked-up by a wrong signal, therefore misses the correct signal.

159-166, producer and consumer are started. The producer/consumer cycles is performed 200 times. (Actually, only pointers to
data structures should be passed. An integer does not always fit into the memory space of a pointer.

170-177, both pthreads are collected by the main thread.
179-193, resources are released.

4.4.4 Barrier Example

This Section describes the barrier example of the book by Dave Butenhof7.
Three functions are defined; barrierinit and barrierdestroy define the initializing and destructor functions of the barrier. The

function barrierwait defines the entrance to the barrier. The pthreads at this barrier wait until a specified number of pthreads has
arrived. This number is specified in barrierinit.

1-42 barrier header file barrier.h.
43-186 barrier code file barrier.c.
19-26 type definition of barrier.
72-88 barrierinit. This function initializes the barrierbarrier (72). The number of pthreads which need to wait at this barrier

is specified withcount (72,76). In 77, cycle is initialized. This variable is used to filter wrong wake-up signals. Finally, the barrier
is made valid in 86.

93-125 barrierdestroy. This function removes the barrierbarrier (93). After checking if the barrier is valid (97), the barrier
access mutex is locked (100). If any pthreads are still waiting at this barrier (108), this function is aborted (110). If no pthreads are
waiting, the barrier is invalidized (113), the access mutex unlocked and released, and the condition is removed (122,123).

132-186 is the actual barrier function. The pthreads which enter this function are blocked (169) until the it receives a signal and
the cycle has changed, since the pthread has entered this function. If the pthread which has just entered the barrierwait function is
the pthread all the other pthreads are waiting for, it changes the cycle (146), resets the counter (147), and broadcasts to all waiting
pthreads that it has arrived (148).

7D. Butenhof, PROGRAMMING with POSIX THREADS, (page 245). (C) 1997 Addison Wesley Longman Inc., Reprinted by permission of
Addison Wesley Longman.

22

SIGGRAPH 2000 course on ”Rendering and Visualization in Parallel Environments”

Listing 1 - Initializing Pthreads

 1 /*
 2 * create.c
 3 * starting and terminating pthreads
 4 *
 5 */
 6
 7 #include <stdio.h>
 8 #include <stdlib.h>
 9 #include <limits.h>
10 #include <string.h>
11
12 #include <pthread.h>
13
14 #define NO_PTHREADS 6
15
16 typedef struct {
17 pthread_t main;
18 int pthread_no;
19 } ident_t;
20
21 void* thread_function(void* arg)
22 {
23 int i;
24 ident_t* info = (ident_t*) arg;
25 pthread_t self;
26
27 self = pthread_self();
28 for (i=0; i<INT_MAX/100; i++);
29
30 if (pthread_equal(self,info−>main)) {
31 fprintf(stderr,"Current pthread is main thread.\n");
32 } else {
33 fprintf(stderr,"Current pthread is thread #%d.\n",
34 info−>pthread_no);
35 pthread_exit((void*) &(info−>pthread_no));
36 }
37 return NULL;
38 }
39
40 int main(void)
41 {
42 int i,rc;
43 int *res;
44 void *resp;
45 pthread_t ids[NO_PTHREADS+1];
46 ident_t infos[NO_PTHREADS+1];
47
48 ids[0]= pthread_self();
49 infos[0].pthread_no = 0;
50 infos[0].main = pthread_self();
51 for (i=1; i<=NO_PTHREADS; i++) {
52 infos[i].pthread_no = i;
53 infos[i].main = pthread_self();
54 rc = pthread_create(&ids[i], NULL, thread_function,
55 (void*) &(infos[i]));
56 if (rc) {
57 fprintf(stderr,"ERROR − while creating pthread %d: %s\n",
58 infos[i].pthread_no, strerror(rc));
59 exit(−1);
60 }
61 fprintf(stderr,"Main: Thread %d started.\n",
62 infos[i].pthread_no);
63 }

64
65 for (i=2; i<=NO_PTHREADS; i++) {
66 rc = pthread_detach(ids[i]);
67 if (rc) {
68 fprintf(stderr,"ERROR − while detaching pthread %d: %s\n",
69 infos[i].pthread_no, strerror(rc));
70 exit(−1);
71 }
72 }
73
74 thread_function((void*) &(infos[0]));
75 rc = pthread_join(ids[1], &resp);
76 res = (int*) resp;
77 if (rc) {
78 fprintf(stderr,"ERROR − while joining pthread %d: %s\n",
79 infos[i].pthread_no, strerror(rc));
80 exit(−1);
81 }
82 fprintf(stderr,"Joined pthread result is %d\n",
83 (int) *res);
84 }

23

SIGGRAPH 2000 course on ”Rendering and Visualization in Parallel Environments”

Listing 2 - Mutex Example

 1 /*
 2 * mutex.c
 3 * pthread mutex handling
 4 *
 5 */
 6
 7 #include <stdio.h>
 8 #include <stdlib.h>
 9 #include <errno.h>
10 #include <string.h>
11
12 #include <pthread.h>
13
14 #define EOK 0
15 #define TRUE 1
16 #define FALSE 0
17 #define NO_PTHREADS 6
18 #define LOCK_TIMES 100000
19
20 typedef struct {
21 int pthread_no;
22 pthread_t main;
23 int mutex_tries;
24 pthread_mutex_t* mutex;
25 } param_t;
26
27 void* thread_function(void* arg)
28 {
29 int i,j,rc,tries,read;
30 param_t* info = (param_t*) arg;
31
32 for (i=0; i<100; i++) {
33 tries = 0;
34 read = TRUE;
35 while (read) {
36 rc = pthread_mutex_trylock(info−>mutex);
37 switch (rc) {
38 case EBUSY:
39 tries++;
40 info−>mutex_tries++;
41 break;
42 case EOK:
43 for (j=0; j<LOCK_TIMES; j++);
44 rc = pthread_mutex_unlock(info−>mutex);
45 if (rc) {
46 fprintf(stderr,"ERROR − while unlocking mutex: %s\n",
47 strerror(rc));
48 exit(−1);
49 }
50 read = FALSE;
51 break;
52 default:
53 fprintf(stderr,"ERROR − while trying to lock mutex: %s\n",
54 strerror(rc));
55 }
56 }
57 }
58
59 if (!pthread_equal(pthread_self(),info−>main)) {
60 pthread_exit(NULL);
61 }
62 return NULL;
63 }
64
65 int main(void)
66 {
67 int i,rc;
68 pthread_t ids[NO_PTHREADS+1];
69 pthread_mutex_t *mutex;
70 param_t infos[NO_PTHREADS+1];

71
72 mutex = (pthread_mutex_t*) calloc(1,sizeof(pthread_mutex_t));
73 if (!mutex) {
74 fprintf(stderr,"ERROR − while allocating mutex.\n");
75 exit(−1);
76 }
77
78 rc = pthread_mutex_init(mutex,NULL);
79 if (rc) {
80 fprintf(stderr,"ERROR − while init’ mutex: %s\n",
81 strerror(rc));
82 exit(−1);
83 }
84
85 rc = pthread_mutex_lock(mutex);
86 if (rc) {
87 fprintf(stderr,"ERROR − while locking mutex: %s\n",
88 strerror(rc));
89 exit(−1);
90 }
91 ids[0]= pthread_self();
92 infos[0].pthread_no = 0;
93 infos[0].mutex_tries = 0;
94 infos[0].mutex = mutex;
95 infos[0].main = pthread_self();
96 for (i=1; i<=NO_PTHREADS; i++) {
97 infos[i].pthread_no = i;
98 infos[i].mutex_tries = 0;
99 infos[i].mutex = mutex;
100 infos[i].main = pthread_self();
101 rc = pthread_create(&ids[i], NULL, thread_function,
102 (void*) &(infos[i]));
103 if (rc) {
104 fprintf(stderr,"ERROR − while creating pthread %d: %s\n",
105 infos[i].pthread_no, strerror(rc));
106 exit(−1);
107 }
108 fprintf(stderr,"Thread %d started.\n",i);
109 }
110
111 for (i=0; i<100000; i++);
112 rc = pthread_mutex_unlock(mutex);
113 if (rc) {
114 fprintf(stderr,"ERROR − while unlocking mutex: %s\n",
115 strerror(rc));
116 exit(−1);
117 }
118
119 /* Simulating a barrier */
120 for (i=1; i<=NO_PTHREADS; i++) {
121 rc = pthread_join(ids[i], NULL);
122 if (rc) {
123 fprintf(stderr,"ERROR − while joining pthread %d: %s\n",
124 infos[i].pthread_no, strerror(rc));
125 exit(−1);
126 }
127 fprintf(stderr,"On average, pthread %d waited %d times\n",
128 infos[i].pthread_no,infos[i].mutex_tries/LOCK_TIMES);
129 }
130
131 rc = pthread_mutex_destroy(mutex);
132 if (rc) {
133 fprintf(stderr,"ERROR − while destroying mutex: %s\n",
134 strerror(rc));
135 exit(−1);
136 }
137 free(mutex);
138 }

24

SIGGRAPH 2000 course on ”Rendering and Visualization in Parallel Environments”

Listing 3 - Condition Example

 1 /*
 2 * cond.c
 3 * pthread condition handling
 4 *
 5 */
 6
 7 #include <stdio.h>
 8 #include <stdlib.h>
 9 #include <unistd.h>
10 #include <string.h>
11 #include <pthread.h>
12
13 #define NOTHING −1
14 #define CREATED 0
15 #define MODIFIED 1
16 #define RES (void*) 0;
17
18 typedef struct {
19 int val;
20 pthread_mutex_t *mutex;
21 pthread_cond_t *created;
22 pthread_cond_t *consumed;
23 int pred; /* shared predicate */
24 } buffer_t;
25
26 static buffer_t buffer;
27
28 void ferr(char *text, int rc)
29 {
30 fprintf(stderr,"%s: %s\n",text, strerror(rc));
31 exit(−1);
32 }
33
34 void message(char *text)
35 {
36 fprintf(stderr,"%s\n",text);
37 }
38
39 void init(void)
40 {
41 int rc;
42
43 buffer.mutex =
44 (pthread_mutex_t*) calloc(1,sizeof(pthread_mutex_t));
45 if (!buffer.mutex) {
46 ferr("ERROR − while allocating mutex",0);
47 }
48 rc = pthread_mutex_init(buffer.mutex, NULL);
49 if (rc) {
50 ferr("ERROR − while init’ mutex",rc);
51 }
52
53 buffer.created =
54 (pthread_cond_t*) calloc(1,sizeof(pthread_cond_t));
55 if (!buffer.created) {
56 ferr("ERROR − while allocating condition created",0);
57 }
58 buffer.consumed =
59 (pthread_cond_t*) calloc(1,sizeof(pthread_cond_t));
60 if (!buffer.consumed) {
61 ferr("ERROR − while allocating condition consumed",0);
62 }

63 rc = pthread_cond_init(buffer.created, NULL);
64 if (rc) {
65 ferr("ERROR − while init’ condition created",rc);
66 }
67 rc = pthread_cond_init(buffer.consumed, NULL);
68 if (rc) {
69 ferr("ERROR − while init’ condition conumed",rc);
70 }
71 message("Classic producer/consumer problem is started ..");
72 }
73
74 void *producer(void *times)
75 {
76 int i,t,rc;
77
78 t = (int) times;
79 i = 1;
80
81 /* To slow down initial signal */
82 sleep(2);
83
84 message("Producer is started..");
85
86 while (i<=t) {
87 rc = pthread_mutex_lock(buffer.mutex);
88 if (rc) {
89 ferr("ERROR − while locking mutex",rc);
90 }
91 buffer.val = i+1;
92 buffer.pred = 0;
93 rc = pthread_cond_signal(buffer.created);
94 if (rc) {
95 ferr("ERROR − while signaling created",rc);
96 }
97
98 do {
99 rc = pthread_cond_wait(buffer.consumed, buffer.mutex);
100 if (rc) {
101 ferr("ERROR − while waiting on consumed",rc);
102 }
103 } while (buffer.pred != 1);
104 fprintf(stderr," Modified value No. %d=%d\n",i,buffer.val);
105 i++;
106
107 rc = pthread_mutex_unlock(buffer.mutex);
108 if (rc) {
109 ferr("ERROR − while unlocking mutex",rc);
110 }
111 }
112 return NULL;
113 }
114
115 void *consumer(void* times)
116 {
117 int i,t,rc;
118
119 t = (int) times;
120 i = 1;
121 message("Consumer is started..");
122

25

SIGGRAPH 2000 course on ”Rendering and Visualization in Parallel Environments”

123 while (i<=t) {
124 rc = pthread_mutex_lock(buffer.mutex);
125 if (rc) {
126 ferr("ERROR − while locking mutex",rc);
127 }
128 do {
129 rc = pthread_cond_wait(buffer.created,buffer.mutex);
130 if (rc) {
131 ferr("ERROR − while waiting on empty",rc);
132 }
133 } while (buffer.pred != 0);
134
135 buffer.val *=11;
136 buffer.pred = 1;
137 i++;
138
139 rc = pthread_cond_signal(buffer.consumed);
140 if (rc) {
141 ferr("ERROR − while signaling consumed",rc);
142 }
143
144 rc = pthread_mutex_unlock(buffer.mutex);
145 if (rc) {
146 ferr("ERROR − while unlocking mutex",rc);
147 }
148 }
149
150 return NULL;
151 }
152
153 void main(void)
154 {
155 pthread_t pthreadA, pthreadB;
156 int rc;
157
158 init();
159 rc = pthread_create(&pthreadA, NULL, producer, (void*) 200);
160 if (rc) {
161 ferr("ERROR − while creating pthread ",rc);
162 }
163 rc = pthread_create(&pthreadB, NULL, consumer, (void*) 200);
164 if (rc) {
165 ferr("ERROR − while creating pthread",rc);
166 }
167
168 message("Main is waiting for pthreads ...");
169
170 rc = pthread_join(pthreadA,NULL);
171 if (rc) {
172 ferr("ERROR − while joining pthread",rc);
173 }
174 rc = pthread_join(pthreadB,NULL);
175 if (rc) {
176 ferr("ERROR − while joining pthread",rc);
177 }
178

179 rc = pthread_mutex_destroy(buffer.mutex);
180 if (rc) {
181 ferr("ERROR − while destorying mutex",rc);
182 }
183 rc = pthread_cond_destroy(buffer.created);
184 if (rc) {
185 ferr("ERROR − while destorying condition created",rc);
186 }
187 rc = pthread_cond_destroy(buffer.consumed);
188 if (rc) {
189 ferr("ERROR − while destorying condition consumed",rc);
190 }
191 free(buffer.mutex);
192 free(buffer.created);
193 free(buffer.consumed);
194
195 message("Done.");
196 }
197

26

SIGGRAPH 2000 course on ”Rendering and Visualization in Parallel Environments”

Listing 4 - Barrier Example

D. Butenhof, PROGRAMMING WITH POSIX THREADS, (page 245). (c) 1997 Addison-Wesley-Longman Inc., Reprinted by
permission of Addison-Wesley-Longman.

 1 /*
 2 * barrier.h
 3 *
 4 * This header file describes the "barrier" synchronization
 5 * construct. The type barrier_t describes the full state of the
 6 * barrier including the POSIX 1003.1c synchronization objects
 7 * necessary.
 8 *
 9 * A barrier causes threads to wait until a set of threads has
10 * all "reached" the barrier. The number of threads required is
11 * set when the barrier is initialized, and cannot be changed
12 * except by reinitializing.
13 */
14 #include <pthread.h>
15
16 /*
17 * Structure describing a barrier.
18 */
19 typedef struct barrier_tag {
20 pthread_mutex_t mutex; /* Control access to barrier */
21 pthread_cond_t cv; /* wait for barrier */
22 int valid; /* set when valid */
23 int threshold; /* number of threads required */
24 int counter; /* current number of threads */
25 int cycle; /* alternate wait cycles (0 or 1)
*/
26 } barrier_t;
27
28 #define BARRIER_VALID 0xdbcafe
29
30 /*
31 * Support static initialization of barriers
32 */
33 #define BARRIER_INITIALIZER(cnt) \
34 {PTHREAD_MUTEX_INITIALIZER, PTHREAD_COND_INITIALIZER, \
35 BARRIER_VALID, cnt, cnt, 0}
36
37 /*
38 * Define barrier functions
39 */
40 extern int barrier_init (barrier_t *barrier, int count);
41 extern int barrier_destroy (barrier_t *barrier);
42 extern int barrier_wait (barrier_t *barrier);
43 /*
44 * barrier.c
45 *
46 * This file implements the "barrier" synchronization construct.
47 *
48 * A barrier causes threads to wait until a set of threads has
49 * all "reached" the barrier. The number of threads required is
50 * set when the barrier is initialized, and cannot be changed
51 * except by reinitializing.
52 *
53 * The barrier_init() and barrier_destroy() functions,
54 * respectively, allow you to initialize and destroy the
55 * barrier.
56 *
57 * The barrier_wait() function allows a thread to wait for a
58 * barrier to be completed. One thread (the one that happens to
59 * arrive last) will return from barrier_wait() with the status
60 * −1 on success −− others will return with 0. The special
61 * status makes it easy for the calling code to cause one thread
62 * to do something in a serial region before entering another
63 * parallel section of code.
64 */

65 #include <pthread.h>
66 #include "errors.h"
67 #include "barrier.h"
68
69 /*
70 * Initialize a barrier for use.
71 */
72 int barrier_init (barrier_t *barrier, int count)
73 {
74 int status;
75
76 barrier−>threshold = barrier−>counter = count;
77 barrier−>cycle = 0;
78 status = pthread_mutex_init (&barrier−>mutex, NULL);
79 if (status != 0)
80 return status;
81 status = pthread_cond_init (&barrier−>cv, NULL);
82 if (status != 0) {
83 pthread_mutex_destroy (&barrier−>mutex);
84 return status;
85 }
86 barrier−>valid = BARRIER_VALID;
87 return 0;
88 }
89
90 /*
91 * Destroy a barrier when done using it.
92 */
93 int barrier_destroy (barrier_t *barrier)
94 {
95 int status, status2;
96
97 if (barrier−>valid != BARRIER_VALID)
98 return EINVAL;
99
100 status = pthread_mutex_lock (&barrier−>mutex);
101 if (status != 0)
102 return status;
103
104 /*
105 * Check whether any threads are known to be waiting; report
106 * "BUSY" if so.
107 */
108 if (barrier−>counter != barrier−>threshold) {
109 pthread_mutex_unlock (&barrier−>mutex);
110 return EBUSY;
111 }
112
113 barrier−>valid = 0;
114 status = pthread_mutex_unlock (&barrier−>mutex);
115 if (status != 0)
116 return status;
117
118 /*
119 * If unable to destroy either 1003.1c synchronization
120 * object, return the error status.
121 */
122 status = pthread_mutex_destroy (&barrier−>mutex);
123 status2 = pthread_cond_destroy (&barrier−>cv);
124 return (status == 0 ? status : status2);
125 }
126

27

SIGGRAPH 2000 course on ”Rendering and Visualization in Parallel Environments”

D. Butenhof, PROGRAMMING WITH POSIX THREADS, (page 245). (c) 1997 Addison-Wesley-Longman Inc., Reprinted by
permission of Addison-Wesley-Longman.

127 /*
128 * Wait for all members of a barrier to reach the barrier. When
129 * the count (of remaining members) reaches 0, broadcast to wake
130 * all threads waiting.
131 */
132 int barrier_wait (barrier_t *barrier)
133 {
134 int status, cancel, tmp, cycle;
135
136 if (barrier−>valid != BARRIER_VALID)
137 return EINVAL;
138
139 status = pthread_mutex_lock (&barrier−>mutex);
140 if (status != 0)
141 return status;
142
143 cycle = barrier−>cycle; /* Remember which cycle we’re on */
144
145 if (−−barrier−>counter == 0) {
146 barrier−>cycle = !barrier−>cycle;
147 barrier−>counter = barrier−>threshold;
148 status = pthread_cond_broadcast (&barrier−>cv);
149 /*
150 * The last thread into the barrier will return status
151 * −1 rather than 0, so that it can be used to perform
152 * some special serial code following the barrier.
153 */
154 if (status == 0)
155 status = −1;
156 } else {
157 /*
158 * Wait with cancellation disabled, because barrier_wait
159 * should not be a cancellation point.
160 */
161 pthread_setcancelstate (PTHREAD_CANCEL_DISABLE, &cancel);
162
163 /*
164 * Wait until the barrier’s cycle changes, which means
165 * that it has been broadcast, and we don’t want to wait
166 * anymore.
167 */
168 while (cycle == barrier−>cycle) {
169 status = pthread_cond_wait (
170 &barrier−>cv, &barrier−>mutex);
171 if (status != 0) break;
172 }
173
174 pthread_setcancelstate (cancel, &tmp);
175 }
176 /*
177 * Ignore an error in unlocking. It shouldn’t happen, and
178 * reporting it here would be misleading −− the barrier wait
179 * completed, after all, whereas returning, for example,
180 * EINVAL would imply the wait had failed. The next attempt
181 * to use the barrier *will* return an error, or hang, due
182 * to whatever happened to the mutex.
183 */
184 pthread_mutex_unlock (&barrier−>mutex);
185 return status; /* error, −1 for waker, or 0 */
186 }

28

SIGGRAPH 2000 course on ”Rendering and Visualization in Parallel Environments”

Part II

Rendering

5 Parallel Polygonal Rendering

5.1 Introduction

Many datasets in design, modeling, and scientific visualization are built from polygons and often from simple triangles. Frequently
these datasets are very big (several millions to several tens of millions of triangles) as they describe a polygonal approximation to an
underlying true surface. The size of these datasets often exceeds the processing and rendering capabilities of technical workstations.
Parallel algorithms and parallel computers have often been seen as a solution for interactive rendering of such datasets.

Parallel rendering algorithms have been developed in different domains of computer graphics. Developers of graphics hardware
have long recognized the need to partition the graphics pipeline amongst several processors in order to achieve fast rendering
performance. These efforts resulted in highly specialized architectures that were optimized for particular algorithms and workloads.

As supercomputers became more powerful and less expensive it was a natural step to use them to render and display the results
of the computations they were running. This had the advantage of saving time and bandwidth because the data did not need to
be transferred from the supercomputer to a dedicated rendering engine. Rendering on supercomputers often does not constitute
the most cost-effective solution, e.g. measured as dollars per rendering performance. However, there is no dedicated rendering
hardware and all graphics algorithms are implemented in software, thus offering more flexibility in the choice of algorithms and
supported rendering features.

This paper will describe and discuss different solutions to the problem of efficient rendering of polygonal models on parallel
computers. We will start out with a description of the background of the problem, in particular the polygon rendering process,
different rendering scenarios, and issues related to the architecture of the target platform. Then we will discuss ways to classify
different parallel rendering algorithms which will provide insights into the properties of different strategies. Finally, we will describe
different approaches to achieve load-balancing in parallel rendering systems.

For further study the reader is referred to the papers in the bibliography, in particular [126], and the proceedings of the Parallel
Rendering Symposiums and the Eurographics Rendering Workshops.

5.2 Background

DisplayDisk
Geometry
Processor

Memory Rasterizer
Processor
Fragement

Figure 8: Simplified model of the rendering pipeline.

5.2.1 Rendering Pipeline

In this paper we will only consider rendering of polygonal models using the standard rendering pipeline, i.e. we will not discuss
ray-tracing or volume rendering. Figure 8 shows the principal steps in rendering of a polygonal model. The description of the model
is stored on disk in some file format such as VRML. Before commencing the actual rendering process, the model must be loaded
from disk into main memory and converted into an internal representation suitable for rendering. All further processing steps are
then memory-to-memory operations. It should be noted that the order of primitives on disk and in the in-memory representation is
arbitrary and is usually determined by the application. In particular, the order of primitives in the should not be relied upon when
trying to load-balance parallel processors.

Geometry processingforms the first stage of the rendering pipeline. It includes the steps of transforming objects from their intrin-
sic coordinate system, e.g. model coordinates, into device coordinates, lighting, computation of texture coordinates, and clipping
against the view frustum. Except for clipping, all operations in this stage are performed on vertex information. (Clipping operates
on entire polygons which is, in particular on SIMD computers, often disrupting the data flow. The steps in the geometry pipeline
can be rearranged such that clipping is postponed until the very end when vertices are reassembled into triangles for rasterization
[95, 106]. Geometry processing needs mostly floating point operations to implement the matrix multiplications required to trans-
form vertices and to support lighting calculations. Depending on the number of lights and the complexity of the lighting model
geometry processing requires between several hundred and a few thousand floating point operations per vertex.

Rasterizationconverts primitives (typically triangles) described as screen-space vertices into pixels. The resulting pixels are
then subjected to variousfragment processingoperations, such as texture mapping, z-buffering, alpha-blending etc. The final pixel
values are written into the frame buffer from where they are scanned out onto the display. Most graphics systems implement
rasterization and fragment processing as a unit. One notable exception is the PixelFlow system [35].

29

SIGGRAPH 2000 course on ”Rendering and Visualization in Parallel Environments”

Rasterization and fragment processing are use predominantly fixed-point or integer computations. Depending on the complexity
of the fragment processing operations, between 5 and up to 50 integer computations per pixel and per triangle are required. Because
rasterization is algorithmically simple yet requires such a huge number of operations it is often implemented in hardware.

More details on the computational requirements for the different stages in the rendering pipeline can be found for instance in
[36, pp. 866-873].

Finally, the complete image is either sent to the screen for display or written to disk. In many parallel rendering algorithms
this step forms a performance bottleneck as partial images stored on different processors have to be merged in one central location
(the screen or a disk). (Although this step should be included when measuring the end-to-end performance of a parallel rendering
system, some researchers explicitly exclude this step due to shortcomings of their particular target platform [30].)

5.2.2 Single-frame vs. multi-frame rendering

Rendering polygonal models can be driven by several needs. If the model is only used once for the generation of a still image, the
entire rendering process outlined above has to be performed. The creation of animation sequences requires rendering of the same
model for different values of time and consequently varying values for time-dependent rendering parameters, e.g. view position,
object location, or light source intensities. Even though multi-frame rendering could be handled as repeated single-frame rendering,
it offers the opportunity to exploit inter-frame coherence. For example, access to the scene database can be amortized over several
frames and only the actual rendering steps (geometry processing and rasterization) must be performed for every frame. Other ways
to take advantage of inter-frame coherence will be discussed below.

5.2.3 Target Architectures

Parallel polygon rendering has been demonstrated on a large variety of platforms ranging from small multi-processor system
using off-the-shelve microprocessors over multi-million dollar supercomputers to graphics workstations built with special-purpose
hardware.

In spite of the many differences between those computers, their rendering performance depends on a few key architectural
features:

Disk bandwidthdetermines how fast the model can be loaded from file into memory. For off-line rendering, i.e. storing the
image on file instead of displaying it on screen, disk performance also affects how fast the final image can be written back. For
large models, disk access time takes up an appreciable portion of the total rendering time and calls for high-performance disk
subsystems like disk striping.

Inter-processor communicationis required both to exchange or transfer model data between processors and to synchronize the
operation of the parallel processors. The former calls for a connection providing high bandwidth for large data packages while
the latter requires low latency for small data transfers. Often these two needs result in conflicting technical requirements. The
physical interconnection can be formed by a bus, shared memory, dedicated interconnection networks, or by a standard networking
infrastructure like Ethernet. A mismatch between rendering algorithm and communication infrastructure will lead to saturated
networks, low graphics performance, and underutilized CPUs. It should be noted that advertised peak bandwidth of a network
technology is often based on raw hardware performance and may differ by as much as an order of magnitude from the bandwidth
attainable by an application in practice.

Memory bandwidthdetermines how fast the processor can operate on model and pixel information once that information has
been loaded from disk or over the network. The effective bandwidth is determined by the entire memory subsystem, including main
memory and the various levels of caching.

Compute power.Both floating point and integer operations must be matched to the algorithm. As note above, geometry process-
ing requires mostly floating point operations while rasterization uses mostly integer operations. The core rendering routines contain
only few branches. Note that the available compute power affects only the computational portions of the algorithm. Often com-
putation is outweighed by communication, which leads to the (often surprising and disappointing) effect that increases in compute
power have little effect on the overall rendering performance [105].

5.3 Algorithm Classification

For many years the classification of parallel rendering algorithms and architectures has proven to be an elusive goal. We will discuss
several such classifications to gain some insight into the design space and possible solutions.

5.3.1 Pipelining vs. Parallelism

Irrespective of the problem domain, parallelization strategies can be distinguished by how the problem is mapped onto the parallel
processors.

Forpipeliningthe problem is decomposed into individual steps that are mapped onto processors. Data travel through the proces-
sors and are transformed by each stage in the pipeline. For many problems, like the rendering pipeline (sic!), such a partitioning
is very natural. However, pipelining usually offers only a limited amount of parallelism. Furthermore, it is often difficult to
achieve good load-balancing amongst the processors in the pipeline as the different functions in the pipeline vary in computational
complexity.

To overcome such constraints pipelining is often augmented byreplicating some or all pipeline stages. Data are distributed
amongst those processor and worked on in parallel. If the algorithms executed by each of the processors are identical, the processors

30

SIGGRAPH 2000 course on ”Rendering and Visualization in Parallel Environments”

can perform their operation in lockstep, thus forming a SIMD (single-instruction, multiple-data) engine. If the algorithms contain
too many data dependencies thus making SIMD operation inefficient, MIMD (multiple-instruction, multiple-data) architectures
are more useful. SIMD implementations are usually more efficient as the processors can share instructions and require very little
interprocessor communication or synchronization.

5.3.2 Object Partitioning vs. Image Partitioning

One of the earliest attempts at classifying partitioning strategies for parallel rendering algorithms took into consideration whether
the data objects distributed amongst parallel processors belonged into object space, e.g. polygons, edges, or vertices, or into image
space, i.e. collections of pixels such as portions of the screen, scanlines or individual pixels [4]. Object-space partitioning is
commonly used for the geometry processing portion of the rendering pipeline, as its operation is intrinsically based on objects.
Most parallelization strategies for rasterizers employ image-space partitioning [33, 125, 27, 7, 6, 87] A few architectures apply
object-space partitioning in the rasterizer [123, 37, 104].

5.3.3 Sorting Classification

Based on the observation that rendering can be viewed as a sorting process of objects into pixels [34], different parallel rendering
algorithms can be distinguished by where in the rendering pipeline the sorting occurs [39]. Considering the two main steps in
rendering, i.e. geometry processing and rasterization, there are three principal locations for the sorting step: Early during geometry
processing (sort-first), between geometry processing and rasterization (sort-middle), and after rasterization (sort-last).

Figure 9) illustrates the three approaches. In the following discussion we will follow [39] in referring to a pair of geometry
processor and a rasterizer as a renderer.

Sort-middlearchitectures form the most natural implementation of the rendering pipeline. Many parallel rendering systems,
both software and hardware, use this approach, e.g. [7, 33, 6, 26, 24, 127, 30]. They assign primitives to geometry processors that
implement the entire geometry pipeline. The transformed primitives are then sent to rasterizers that are each serving a portion of
the entire screen. One drawback is the potential for poor load-balancing among the rasterizers due to uneven distribution of objects
across the screen. Another problem of this approach is the redistribution of primitives after the geometry stage which requires a
many-to-many communication between the processors. A hierarchical multi-step method to reduce the complexity of this global
sort is described in [30].

Sort-lastassigns primitives to renderers that generate a full-screen image of all assigned primitives. After all primitives have been
processed, the resulting images are merged/composited into the final image. Since all processors handle all pixels this approach
offers good load-balancing properties. However compositing the pixels of the partial images consumes large amounts of bandwidth
and requires support by dedicated hardware, e.g. [35]. Further, with sort-last implementations it is difficult to support anti-aliasing,
as objects covering the same pixel may be handled by different processors and will only meet during the final compositing step.
Possible solutions, like oversampling or A-buffers [18], increase the bandwidth requirements during the compositing step even
further.

Sort-firstarchitectures quickly determine for each primitive to which screen region(s) it will contribute. The primitive is then
assigned to those renderers that are responsible for those screen regions. Currently, no actual rendering systems are based on this
approach even though there are some indications that it may prove advantageous for large models and high-resolution images [88].
[88] claims that sort-first has to redistribute fewer objects between frames than sort-middle. Similar to sort-middle, it is prone to
suffer from load-imbalances unless the workload is leveled using an adaptive scheme that resizes the screen regions each processor
is responsible for.

5.4 Load Balancing

As with the parallel implementation of any algorithm the performance depends critically on balancing the load between the parallel
processors. There are workload-related and design-related factors affecting the load balancing. We will first discuss workload
issues and then describe various approaches to design for good load-balance.

Before the discussion of load balancing strategies, we will define terms used throughout the rest of the discussion.
Tasksare the basic units of work that can be assigned to a processor, e.g. objects, primitives, scanlines, pixels etc.
Granularityquantifies the minimum number of tasks that are assigned to a processor, e.g. 10 scanlines per processor or 128x128

pixel regions.
Coherencedescribes the similarity between neighboring elements like consecutive frames or neighboring scanlines. Coherence is

exploited frequently in incremental calculations, e.g. during scan conversion. Parallelization may destroy coherence, if neighboring
elements are distributed to different processors.

Load balancedescribes how well tasks are distributed across different processor with respect to keeping all processors busy for
all (or most) of the time. Surprisingly, there is no commonly agreed upon definition of load balance in the literature. Here, we
define load balance based on the time between when the first and when the last work task finish.

LB = 1�
T � Tf

T
(1)

whereT is the total processing time andTf is the time when the fastest processor finishes.

31

SIGGRAPH 2000 course on ”Rendering and Visualization in Parallel Environments”

Rasterizer

Geometry
Processor

Rasterizer

Geometry
Processor

Rasterizer

Geometry
Processor

Rasterizer

Geometry
Processor

Rasterizer

Screen

Geometry
Processor

Rasterizer

Geometry
Processor

Rasterizer

Geometry
Processor

Rasterizer

Screen

Composited
Pixel

(a) (b)

(c)

Geometry
Processor

Rasterizer

Geometry
Processor

Rasterizer

Geometry
Processor

Rasterizer

Geometry
Processor

Rasterizer

Geometry
Processor

Figure 9: Classification of parallel rendering methods according to the location of the sorting step. (a) sort-first (b) sort-middle (c)
sort-last.

5.4.1 Workload Characterization

Several properties of the model are important for analyzing performance and load-balancing of a given parallel rendering archi-
tecture. Clipping and object tesselation affect load-balancing during geometry processing, while spatial object distribution and
primitive size mostly affect the balance amongst parallel rasterizers.

Clipping. Objects clipped by the screen boundaries incur more work than objects that are trivially accepted or rejected. It is
difficult to predict whether an object will be clipped and load-imbalances can result as a consequence of one processor receiving
a disproportionate number of objects requiring clipping. There are techniques that can reduce the number of objects that require
clipping by enabling rasterizers to deal with objects outside of the view frustum [96, 31]. This reduces the adverse affects of
clipping on load-balancing to negligible amounts.

Tesselation.Some rendering APIs use higher order primitives, like NURBS, that are tesselated by the rendering subsystem. The
degree of tesselation, i.e. the number of triangles per object, determines the amount of data expansion occurring during the rendering
process. The degree of tesselation is often view-dependent and hence hard to predict a priori. The variable degree of tesselation
leads to load imbalances as one processor’s objects may expand into more primitives than objects handled by another processor.
Tesselation also affects how many objects need to be considered during the sorting step. In sort-first architectures, primitives are
sorted before the tesselation, thus saving communication bandwidth compared to sort-middle architectures.

Primitive distribution. In systems using image-space partitioning, the spatial distribution of objects across the screen decides
how many objects must be processed by each processor. Usually, objects are not distributed uniformly, e.g. more objects may be

32

SIGGRAPH 2000 course on ”Rendering and Visualization in Parallel Environments”

located in the center of the screen than along the periphery. This creates potential imbalances in the amount of work assigned to
each processor. Below we will discuss different approaches to deal with this problem.

Primitive size. The performance of most rasterization algorithms increases for smaller primitives. (Simply put: It takes less
time to generate fewer pixels.) The mix of large and small primitives therefore determines the workload for the rasterizer. Several
experiments have shown (see e.g. [21]) that many scenes contain a large number of small objects and a few large objects. The
primitive size also affects the overlap factor, i.e. the number of screen regions affected by an object. The overlap factor affects the
performance of image-space partitioning schemes like sort-first and sort-middle algorithms.

5.4.2 Designing for Load-Balancing

Several design techniques are used to compensate for load-imbalances incurred by different workloads. They can be distinguished
asstatic, dynamicandadaptive.

Static load balancing uses a fixed assignment of tasks to processors. Although, a low (i.e. no) overhead is incurred for determin-
ing this assignment, load imbalances can occur if the duration of tasks is variable. Dynamic load balancing techniques determine
the on the fly which processor will receive the next task. Adaptive load balancing determines an assignment of tasks to processors
based on estimated cost for each task, thereby trying to assign equal workload to each processor.

We will now look at several concrete techniques to load balance graphics tasks in multi-processor systems.

On-demand assignment

is a dynamic method that relies on the fact that there are many more tasks (objects or pixels) than there are processors. New work
is assigned to the first available, idle processor. Except during initialization and for the last few tasks, every processor will be
busy all the time. The maximum load imbalance is bounded by the difference in processing time between the smallest (shortest
processing time) and largest (longest processing time) task. The ratio of the number of tasks and the number of processors is called
thegranularity ratio. Selecting the granularity ratio requires a compromise between good load balancing (high granularity ratio)
and overhead for instance due to large overlap factor (low granularity ratio). The optimal granularity ratio depends on the model,
typical values range from about 4 to 32.

An example for dynamic load-balancing through the use of on-demand assignment of tasks is the Pixel-planes 5 system [33].
In Pixel-planes 5, the tasks are 80 128x128 pixel regions that are assigned to the next available rasterizer module. The dynamic
distribution of tasks also allows for easy upgrade of the system with more processors.

Care must be taken when applying this technique to geometry processing: Some graphics APIs (like OpenGL) require that
operations are performed in the exact order in which they were specified, e.g. objects are not allowed to “pass each other” on their
way through the pipeline. MIMD geometry engines using on-demand assignment of objects could violate that assumption and must
therefore take special steps to ensure temporal ordering, e.g. by labeling objects with time stamps.

Interleaving

is a static technique which is frequently used in rasterizers to decrease the sensitivity to uneven spatial object distributions. In
general, the screen is subdivided into regions, e.g. pixels, scanlines, sets of scanlines, sets of pixel columns, or rectangular blocks.
The shape and the size of these regions determines the overlap factor. For a given region size, square regions minimize the overlap
factor [39]. Amongn processor, each processor is responsible for everyn-th screen region. The valuen is known as the interleave
factor. Since clustering of objects usually occurs in larger screen regions and since every object typically covers several pixels, this
technique will eliminate most load-imbalances stemming from non-uniform distribution of objects. Interleaving makes it harder to
exploit spatial coherence as neighboring pixels (or scanlines) are assigned to different processors. Therefore, the interleave factor,
i.e. the distance between pixels/scanlines assigned to the same processor, must be chosen carefully. Several groups have explored
various aspects of interleaving for parallel rasterization, e.g. [56].

Adaptive scheduling

tries to achieve balanced loading of all processors by assigning different number of tasks depending on task size. For geometry
processing this might mean to assign fewer objects to processors that are receiving objects that will be tesselated very finely. In
image-space schemes this means that processors are assigned smaller pixel sets in regions with many objects, thus equalizing the
number of objects assigned to each processor.

Adaptive scheduling can be performed either dynamically or statically. Dynamic adaptation is achieved by monitoring the load-
balance and if necessary splitting tasks to off-load busy processors. Such a scheme is described in [127]: Screen regions are initially
assigned statically to processors. If the system becomes unbalanced, idle processors grab a share of the tasks of the busy processors.

Statically adaptive schemes attempt to statically assign rendering tasks such that the resulting work is distributed evenly amongst
all processors. Such schemes are either predictive or reactive. Predictive schemes estimate the actual workload for the current frame
based on certain model properties. Reactive schemes exploit inter-frame coherence and determine the partioning of the next frame
based on the workload for the current frame, e.g. [30, 100].

Numerous rendering algorithms using adaptive load-balancing have been described. Most these methods operate in two steps:
First, the workload is estimated by counting primitives per screen regions. Then, either the screen is subdivided to create regions
with approximately equal workload or different number of fixed-sized regions (tasks) are assigned to the processors.

33

SIGGRAPH 2000 course on ”Rendering and Visualization in Parallel Environments”

One of the earliest such methods was described by Roble [100]. The number of primitives in each screen region are counted.
Then, low-load regions are combined to form regions with a higher workload. Regions with high workload are split in half. Since
the algorithm does not provide any control over the location of splits, it has the potential of low effectiveness in load-balancing.

Whelan [125] published a similar method that determines the workload by inspecting the location of primitive centroids. High-
workload regions are split using a median-cut algorithm, thereby improving the load-balancing behavior over Roble’s algorithm.
The median-cut approach incurs a sizeable overhead for sorting primitives. The use of centroids instead of actual primitives
introduces errors because the actual size of the primitives is not taken into account.

Whitman [126] measures workload by counting the number of primitives overlapping a region. The screen is then subdivided
using a quad-tree to create a set of regions with equal workload. The principal problem with the algorithm is that work may be
overestimated due to double-counting of primitives.

Mueller [88] improves over the shortcomings of Whelan’s method. The Mesh-based Adaptive Hierarchical Decomposition
(MAHD) is based on a regular, fine mesh overlaid over the screen. For each mesh cell, primitives are counting in inverse proportion
to their size. This approach is experimentally justified and avoids the double-counting problems of Whitman’s method. The mesh
cells are then aggregated into larger clusters by using a summed-area table for the workload distribution across the screen. The
summed-area table is more efficient than the media-cut algorithm in Whelan’s method.

Later, Whitman [127] describes an dynamically adaptive scheme. Initially, the screen is subdivided regularly to a predetermined
granularity ratio (here: 2). During the actual processing run, processors that complete their tasks early, “steal” work from busier
processors by splitting their work region. In order to avoid instability and/or extra overhead, processors steal from the processor
with most work left. Also, splitting only occurs if the remaining work exceeds a set threshold. Otherwise, the busy processor
finishes his work uninterrupted.

Finally, Ellsworth [30] describes a reactive adaptive load-balancing method. The method is based on a fixed grid overlaid over
the screen. Between the frames of an animation, the algorithm counts the number of primitives overlapping each grid cell and uses
this count to estimate the workload per cell. Then, cells are assigned to processors for the upcoming frame. The assignment is a
multiple-bin-packing algorithm: Regions are first sorted by descending polygon counts; the regions are assigned in this order to the
processor with the lightest workload.

Frame-parallel rendering

is a straight-forward method to use parallel processors for rendering. Each processor works independently on one frame of an
animation sequence. If there is little variation between consecutive frames, frames can be assigned statically to processors as all
processor tend complete their respective frame(s) in approximately the same time. If processing time varies between frames, it
is also possible to assign frames dynamically (on-demand assignment). In either case, the processors are working on independent
frames and no communication between processors is required after the initial distribution of the model. Unfortunately, this approach
is only viable for rendering of animation sequence. It is not suitable for interactive rendering as it typically introduces large latencies
between the time a frame is issued by the application and when it appears on the screen.

The application programming interface (API)impacts how efficiently the strategies outlined above can be implemented.
Immediate-mode APIs like OpenGL or Direct3D do not have access to the entire model and hence do not allow global optimiza-
tions. Retained-mode APIs like Phigs, Performer, OpenGL Optimizer, Java3D and Fahrenheit maintain an internal representation
of the entire model which supports partitioning of the model for load-balancing.

5.4.3 Data Distribution and Scheduling

In distributed memory architectures, e.g. clusters of workstations or message-passing computers, object data must be sent explicitly
to the processors. For small data sets, one can simply send the full data set to every processor and each processor is then instructed
which objects to use. This approach fails however for large models either because there is not enough storage to replicate the model
at every processor and/or the time to transfer the model is prohibitive due to the bandwidth limitations of the network.

Therefore, most implementations replicate only small data structures like graphics state, e.g. current transformation matrices,
light source data, etc., and distribute the storage for large data structures, primarily the object descriptions and the frame buffer.

For system using static assignment of rendering tasks object data have to be distributed only during the initialization phase of the
algorithm. This makes it easy to partition the algorithm into separate phases that can be scheduled consecutively.

For dynamic schemes data must be distributed during the entire process. Therefore processors cannot continuously work ren-
dering objects but must instead divide their available cycles between rendering and communicating with other processors. Such an
implementation is described in [24]: The system implements a sort-middle architecture where each processor works concurrently
on geometry processing and rasterization, i.e. producing and consuming polygons. The advantage is that only a small amount of
memory must be allocated for polygons to be transferred between processors. Determining the balance between polygon transfor-
mation (generation) and polygon rasterization (consuming) is not obvious. However, [24] states that the overall system performance
is fairly insensitive to that choice.

5.5 Summary

Parallel rendering of polygonal datasets faces several challenges most importantly load-balancing. Polygon rendering proceeds in
two main steps: geometry processing and rasterization. Both steps have unique computational and communication requirements.

For geometry processing load balancing is usually achieved using on-demand assignment of objects to idle processors. For
rasterization, interleaving of pixels or scanlines mostly eliminates load-balancing problems at the expense of less inter-pixel or

34

SIGGRAPH 2000 course on ”Rendering and Visualization in Parallel Environments”

inter-scanline coherence for each processor. Adaptive load-balancing schemes estimate or measure the workload and divide the
screen into regions that will create approximately equal workload.

6 Parallel Volume Rendering

Volume rendering [60] is a powerful computer graphics technique for the visualization of large quantities of 3D data. It is specially
well suited for three dimensional scalar [66, 28, 121, 101] and vector fields [22, 76]. Fundamentally, it works by mapping quantities
in the dataset (such as color, transparency) to properties of a cloud-like material. Images are generated by modelling the interaction
of light with the cloudy materials [131, 78, 77]. Because of the type of data being rendered and the complexity of the lighting
models, the accuracy of the volume representation and of the calculation of the volume rendering integrals [10, 59, 58] are of major
concern and have received considerable interest from researchers in the field.

A popular alternative method to (direct) volume rendering is isosurface extraction, where given a certain value of interest� 2 R,
and some scalar functionf : R3 ! R, a polygonal representation for the implicit surfacef(x; y; z) = � is generated. There are
several methods to generate isosurfaces [70, 82, 50, 93], the most popular being the marching cubes method [70]. Isosurfaces have
a clear advantage over volume rendering when it comes to interactivity. Once the models have been polygonized (and simplified
[108] – marching cubes usually generate lots of redundant triangles), hardware supported graphics workstation can be used to speed
up the rendering. Isosurfaces have several disadvantages, such as lack of fine detail and flexibility during rendering (specially for
handling multiple transparent surfaces), and its binary decision process where surfaces are either inside or outside a given voxel
tends to create artifacts in the data (there is also anambiguityproblem, that has been addressed by later papers like [93]).

6.1 Volumetric Data

Volumetric data comes in a variety of formats, the most common being (we are using the taxonomy introduced in [119]) cartesian
or regular data. Cartesian data is typically a 3D matrix composed of voxels (avoxelcan be defined in two different ways, either as
the datum in the intersection of each three coordinate aligned lines, or as the small cube, either definition is correct as long as used
consistently), while the regular data has the same representation but can also have a scaling matrix associated with it.

Irregular data comes in a large variety, including curvilinear data, that is data defined in awarpedregular grid, or in general, one
can be given scattered (or unstructured) data, where no explicitly connectivity is defined. In general, scattered data can be composed
of tetrahedra, hexahedra, prisms, etc. An important special case is tetrahedral grids. They have several advantages, including easy
interpolation, simple representation (specially for connectivity information), and the fact that any other grid can be interpolated to a
tetrahedral one (with the possible introduction of Steiner points). Among their disadvantages is the fact that the size of the datasets
tend to grow as cells are decomposed into tetrahedra. In the case of curvilinear grids, an accurate decomposition will make the cell
complex contain five times as many cells. More details on irregular grids are postponed until Section 6.7.

6.2 Interpolation Issues

In order to generate the cloud-like properties from the volumetric data, one has to make some assumptions about the underlying
data. This is necessary because the rendering methods typically assume the ability to compute values as a continuous function, and
(for methods that use normal-based shading) at times, even derivatives of such functions anywhere in space. On the other hand,
data is given only at discrete locations in space usually with no explicit derivatives. In order to correctly interpolate the data, for the
case of regular sampled data, it is generally assumed the original data has been sampled at a high enough frequency (or has been
low-pass filtered) to avoid aliasing artifacts [49]. Several interpolation filters can be used, the most common by far is to compute
the value of a functionf(x; y; z) by trilinearly interpolating the eight closest points. Higher order interpolation methods have also
been studied [17, 74], but the computational cost is too high for practical use.

In the case of irregular grids, the interpolation is more complicated. Even finding the cell that contains the sample point is
not as simple or efficient as in the regular case [89, 98]. Also, interpolation becomes much more complicated for cells that are
not tetrahedra (for tetrahedra a single linear function can be made tofit on the four vertices). For curvilinear grids, trilinear
interpolation becomes dependent on the underlying coordinate frame and even on the cell orientation [129, 47]. Wilhelms et al.
[129] proposes using inverse distance weighted interpolation as a solution to this problem. Another solution would be to use higher
order interpolation. In general, it is wise to ask the creator of the dataset for a suitable fitting function.

6.3 Optical Models for Volume Rendering

Volume rendering works by modelling volume as cloud cells composed of semi-transparent material which emits its own light,
partially transmits light from other cells and absorbs some incoming light [130, 75, 77]. Because of the importance of a clear
understanding of such a model to rendering both, regular and irregular grids, the actual inner workings of one such mechanism is
studied here. Our discussion closely follows the one in [130].

We assume each volume cells (differentially) emits light of a certain colorE�(x; y; z), for each color channel� (red, green and
blue), and absorbs some light that comes from behind (we are assuming no multiple scattering of light by particles – our model is
the simplest “useful” model – for a more complete treatment see [75]).

Correctly defining opacity for cells of general size is slightly tricky. We define thedifferential opacityat some depthz to be

(z). ComputingT (z), the fraction of light transmitted through depth0 to z (assuming no emission of light inside the material),

35

SIGGRAPH 2000 course on ”Rendering and Visualization in Parallel Environments”

is simple, we just need to notice that the amount of transmitted light atz+�z is just the amount of light atz minus the attenuation

(z) over a distance of�z:

T (z +�z) = T (z)�
(z)T (z)�z (2)

what (after making a division by�z and taking limits) implies

dT (z +�z)

dz
= �
(z)T (z) (3)

The solution to this linear equation of the first order [20] with boundary conditionT (0) = 1 is:

T (z) = e
�

R
z

0

(u)du
(4)

The accumulated opacity over a ray from front-to-back inside a cell of depthd is (1�T (d)). An important special case is when
the cell has constant differential opacity
, in this caseT (z) = e�
z. Before we continue, we can now solve the question of
definingdifferential opacity
 from theunityopacity (usually user defined and saved in a transfer function table). A simple formula
can express
 in terms ofO:

 = log(
1

1 �O
) (5)

If the model allows for the emission of light inside the material, a similar calculation can be used to calculate the intensityI� for
each color channel inside a cell. In this case using an initial intensityI�(0) = 0, the final system and solutions are as follows:

dI�(z)

dz
= �
(z)I�(z) +E�(z) (6)

I�(z) = T (z)

Z z

0

E�(v)

T (v)
dv (7)

Specializing the solution for constant color and opacity cells (as done above) we get the simple solution:

I�(z) =
E

(1� e�
z) (8)

Usually, for computational efficiency, the exponential in the previous equation is approximated by its first terms in the Taylor
series. [130, 75, 77] describe in detail analytical solutions under different assumptions about the behavior of the opacity and emitted
colors inside the cells, extensions to more complex light behavior and the several tradeoffs of approximating the exponentials with
linear functions.

The previous equations show how to calculate the continuous color and opacity intensity, usually this calculation is done once
for every cell, and the results from each cell arecompositedin a later step. Compositing operators were first introduced in [97], and
are widely used. The most used operator in volume visualization is theover operator, its operation is basically to add the brightness
of the current cell to the attenuated brightness of the one behind, andin the case of front-to-back compositingupdate the opacities
of the cells. The equations for theover operator are:

Co = Ca + Cb(1�Oa) (9)

Oo = Oa +Ob(1�Oa) (10)

It is important to note, that in these equations the colors are saved pre-multiplied by the opacities (i.e., the actual color isCo=Oo),
this saves one multiplication per compositing operation.

6.4 Ray Tracing

A popular method to generate images from volume data is to useray tracingor ray casting[48, 66]. Ray casting works by casting
(at least) one ray per image pixel into volume space, point sampling the scene with some lighting model (like the one just presented)
and compositing the samples as described in the previous section. This method is very flexible and extremely easy to implement.
There are several extensions of basic ray casting to include higher order illumination effects, like discrete ray tracing [132], and
volumetric ray tracing [118]. Both of these techniques take into account global illumination effects incorporating more accurate
approximations of the more general rendering equation [58].

Because of its size, volumetric ray casting (and ray tracing) is very expensive. Several optimizations have been applied to
ray tracing [67, 68, 25]. One of the most effective optimizations are thepresence accelerationtechniques, that exploit the fact
volumetric data is relatively sparse [67, 68, 25, 134, 133]. Levoy [67] introduced the idea by using an octree [102] to skip over
empty space. His idea was further optimized by Danskin and Hanrahan [25] to not only skip over empty space, but also to speed
up sampling calculations over uniform regions of the volume. Another important acceleration techniques includeadaptive image
samplingandearly ray termination. Recently, Lacroute and Levoy [63] have introduced a hybrid method that combines some of
the previous optimizations in a very efficient class of volume rendering algorithms.

36

SIGGRAPH 2000 course on ”Rendering and Visualization in Parallel Environments”

PARC – Hardware-Based Presence Acceleration

Avila, Sobierajski and Kaufman [8, 117] introduced the idea of exploiting the graphics hardware on workstations to speed up
volume rendering. First, they introduce PARC (Polygon Assisted Ray Casting) [8], a technique that uses the Z-buffer [40] to find
the closest and farthest possibly contributing cells. Later, a revised technique [117] is proposed that (still using the Z-buffer) can
produce a better approximation of the set of contributing cells.

Their algorithm consists of first creating a polygonal representation of the set of contributing cells (based on axis aligned quadri-
laterals) from acoarsevolume (see Figure 10). The coarse volume is calculated by grouping neighboring voxels together, creating
supervoxels. Each supervoxel is then tested for the presence ofinterestingvoxels (i.e., voxels that belong to the range of voxels
mapped to non-zero intensities and opacities by the transfer functions). All six external faces of supervoxels are then marked based
on its possible visibility (the second method seems to need to project all the faces).

Eye

PARC Sampling Points

Figure 10:Polygon Assisted Ray Casting.

In order to perform the actual rendering, in the first method (calledDepth Buffer PARC), all the visible quadrilaterals are trans-
formed and scan-converted twice. Once for finding the first non-empty front voxel, and again to determine the final integration
location. In the second method (calledColor Buffer PARC), a sweep along the closest major axis is generated by coloring the
PARC cubes with power of two numbers (so they do not interfere with each other), what leaves a footprint of the intervals(ti; ti+1)
that can be used to better sample the regions having interesting voxels. This can be quite a savings, given that volumes are quite
sparse (most of the time, only 5-10% of a volume contains any lighting and shading information for a given set of transfer functions).

6.5 Splatting or Projection

Ray casting, described in Section 6.4, works from the image space to the object space (volume dataset). Another way of achieving
volume rendering is to reconstruct the image from the object space to the image space, by computing for every element in the
dataset its contribution to the image. Several such techniques have been developed [28, 124].

Westover’s PhD dissertation describes theSplattingtechnique. In splatting, the final image is generated by computing for each
voxel in the volume dataset its contribution to the final image. The algorithm works by virtually “throwing” the voxels onto the
image plane. In this process every voxel in the object space leaves afootprint in the image space that will represent the object. The
computation is processed by virtually “peeling” the object space in slices, and by accumulating the result in the image plane.

Formally the process consists of reconstructing the signal that represents the original object, sampling it and computing the
image from the resampled signal. This reconstruction is done in steps, one voxel at a time. For each voxel, the algorithm calculates
its contribution to the final image, its footprint, and then it accumulates that footprint in the image plane buffer. The computation
can take place in back-to-front or front-to-back order. The footprint is in fact the reconstruction kernel and its computation is key
to the accuracy of the algorithm. Westover [124] proves that the footprint does not depend on the spatial position of voxel itself (for
parallel projections), thus he is able to use a lookup table to approximate the footprint. During computation the algorithm just need
to multiply the footprint with the color of the voxel, instead of having to perform a more expensive operation.

Although projection methods have been used for both regular and irregular grids, they are more popular for irregular grids. In
this case, projection can be sped up by using the graphics hardware (Z-buffer and texture mapping) [112].

6.6 Parallel Volume Rendering of Regular Grids

Here, we present a high performance parallel volume rendering engine for our PVR system. Our research has introduced two
contributions to parallel volume rendering:content-based load balancingandpipelined compositing. Content-based load balancing
(Section 6.6.2) introduces a method to achieve better load balancing in distributed memory MIMD machines. Pipelined compositing
(Section 6.6.3) proposes a component dataflow for implementing theParallel Ray Castingpipeline.

The major goal of the research presented is to develop algorithms and code for volume rendering extremely large datasets at
reasonable speed with an aim on achieving real-time rendering on the next generation of high-performance parallel hardware.

37

SIGGRAPH 2000 course on ”Rendering and Visualization in Parallel Environments”

The sizes of volumetric data we are primarily interested are in the approximate range of 512-by-512-by-512 to 2048-by-2048-by-
2048 voxels. Our primary hardware focus is on distributed-memory MIMD machines, such as the Intel Paragon and the Thinking
Machines CM-5.

A large number of parallel algorithms for volume rendering have been proposed. Schroeder and Salem [107] have proposed a
shear based technique for the CM-2 that could render1283 volumes at multiple frames a second, using a low quality filter. The
main drawback of their technique is low image quality. Their algorithm had to redistribute and resample the dataset for each
view change. Montani et al. [86] developed a distributed memory ray tracer for the nCUBE, that used a hybrid image-based load
balancing and context sensitive volume distribution. An interesting feature of their algorithm is the use of clusters to generate higher
drawing rates at the expense of data replication. However, their rendering times are well over interactive times. Using a different
volume distribution strategy but still a static data distribution, Ma et al. [71] have achieved better frame rates on a CM-5. In their
approach the dataset is distributed in a K-d tree fashion and the compositing is done in a tree structure. Others [55, 16, 90] have
used similar load balancing schemes using static data distribution, for either image compositing or ray dataflow compositing. Nieh
and Levoy [92] have parallelized an efficient volume ray caster citeLevoy:1990:ERT and achieved very impressive performance on
a shared memory DASH machine.

6.6.1 Performance Considerations

In analyzing the performance of parallel algorithms, there are many considerations related to the machine limitations, like for
instance, communication network latency and throughput [90].Latencycan be measured as the time it takes a message to leave
the source processor and be received at the destination end.Throughput is the amount of data that can be sent on the connection
per unit time. These numbers are particularly important for algorithms in distributed memory architectures. They can change the
behavior of a given algorithm enough to make it completely impractical.

Throughput is not a big issue for methods based on volume ray casting that perform static data distribution with ray dataflow
as most of the communication is amortized over time [86, 55, 16]. On the other hand, methods that perform compositing at the
end of rendering or that have communication scheduled as an implicit synchronization phase have a higher chance of experiencing
throughput problems. The reason for this is that communication is scheduled all at the same time, usually exceeding the machines
architectural limits. One should try to avoid synchronized phases as much as possible.

Latency is always a major concern, any algorithm that requires communication pays a price for using the network. The start up
time for message communication is usually long compared to CPU speeds. For instance, in the iPSC/860 it takes at least 200�s to
complete a round trip message between two processors. Latency hiding is an important issue in most algorithms, if an algorithm
often blocks waiting for data on other processors to continue its execution, it is very likely this algorithm will perform badly. The
classic ways to hide latency is to use pipelining or pre-fetching [52].

Even though latency and throughput are very important issues in the design and implementation of a parallel algorithm, the most
important issue by far isload balancing. No parallel algorithm can perform well without a good load balancing scheme.

Again, it is extremely important that the algorithm has as few inherently sequential parts as possible if at all. Amdahl’s law [52]
shows how speed up depends on the parallelism available in your particular algorithm and thatany, however small, sequential part
will eventually limit the speed up of your algorithm.

Given all the constraints above, it is clear that to obtain good load balancing one wants an algorithm that:

� Needs low throughput and spreads communication well over the course of execution.

� Hides the latency, possibly by pipelining the operations and working on more than one image over time.

� Never causes processors to idle and/or wait for others without doinguseful work.

A subtle point in our requirements is in the last phrase, how do we classifyuseful work? We define useful work as the number
of instructionsIopt executed by the best sequential algorithm available to volume render a dataset. Thus, when a given parallel
implementation uses a suboptimal algorithm, it ends up using a much larger number of instructions than theoretically necessary as
each processor executes more instructions thanIopt

P
(P denotes the number of processors). Clearly, one needs to compare with the

best sequential algorithm as this is the actual speed up the user gets by using the parallel algorithm instead of the sequential one.
The last point on useful work is usually neglected in papers on parallel volume rendering and we believe this is a serious flaw in

some previous approaches to the problem. In particular, it is widely known that given a transfer function and some segmentation
bounds, the amount of useful information in a volume is only a fraction of its total size. Based on this fact, we can claim that
algorithms that use static data distribution based only on spatial considerations are presenting “efficiency” numbers that can be
inaccurate, maybe by a large margin.

To avoid the pitfalls of normal static data distribution, we present in the next section a new way to achieve realistic load balancing.
Our load balancing scheme, does not scale linearly, but achieves very fast rendering times while minimizing the “work” done by
the processors.

6.6.2 Content-Based Load Balancing

This section explains our approach to load balancing, which is able to achieve accurate load balancing even when using presence
acceleration optimizations. The original idea of our load balancing technique came from the PARC [8] acceleration technique. We
notice that the amount of “work” performed by a presence accelerated ray caster is roughly directly proportional to the number of
full supervoxelscontained in the volume.

38

SIGGRAPH 2000 course on ”Rendering and Visualization in Parallel Environments”

We use the number of full supervoxels a given processor is assigned as the measure of how much work is performed by that
particular processor. LetP denote the number of processors, andci the number of full supervoxels processori has. In order
to achieve a good load balancing (by our metric) we need a scheme thatminimizesthe following function for a partitionX =
(c1; c2; : : :):

f(X) = max
i6=j

jci � cj j; 8i; j � P (11)

Equation 11 is very general and applies to any partition of the datasetD into disjoint piecesDi. In our work we have tried
to solve this optimization problem in a very restricted context. We have assumed that eachDi is convex. (We show later that
this assumption makes it possible to create afixeddepth sorting network for the partial rays independently calculated each disjoint
region.) Furthermore, we only work with two very simple subdivisions: slabs and a special case of a BSP-tree.

Before we go any further, it is interesting to study the behavior of our load balancing scheme in the very simple case of a slab
subdivision of the volumeD. Slabs (see Figure 11) are consecutive slices of the dataset aligned on two major axes. Given a volume
D, with s superslicesandp processors with the restriction that each processor gets contiguous slices, the problem of calculating the
“best” load balancing partition forp processors consists of enumerating all the(s� 1)(s� 2) : : : (s� p+ 1) ways of partitioning
D, and choosing the one thatminimizesEquation 11.

Figure 11: During slab-based load balancing, each processor gets a range of continuous data set slabs. The number of full
supervoxels determines the exact partition ratio.

The problem of computing the optimal (as defined by our heuristic choice) load balance partition indices can be solved naively
as follows. We can compute all the possible partitions of the integern, wheren is the number of slabs, intoP numbers, whereP is
the number of processors (it is actually a bit different, as we need to consider addition non-associative). For example, ifn = 5, and
P = 3, then1 + 1 + 3 represents the solution that gives the first slab to the first processor, the second slab to the second processor
and the remaining three slabs to the third processor. Enumerating all possible partitioning to get the optimal one is a feasible
solution but can be very computationally expensive for largen andP . We use a slightly different algorithm for the computations
that follows, we choose the permutation with the smallest square difference from the average.

In order to show how our approach works in practice, let us work out the example of using our load balancing example to divide
theneghipdataset (the negative potential of a high-potential iron protein of663 resolution) for four processors. Here we assume
the number of superslices to be16, and the number of supervoxels to be64 (equivalent to a level4 PARC decomposition). Using a
voxel threshold of 10-200 (out of a range up to 255), we get the following 16 supervoxel count for each slab, out of the 1570 total
full supervoxels:

12, 28, 61, 138, 149, 154, 139, 104, 106, 139, 156, 151, 129, 62, 29, 13

A naive approach load balancing scheme (such as the ones used in other parallel volume renderers) would assign regions of equal
volume to each processor resulting in the following partition:

12 + 28 + 61 + 138 = 239
149 + 154 + 139 + 104 = 546
106 + 139 + 156 + 151 = 552

129 + 62 + 29 + 13 = 233

Here processors 2 and 3 have twice as much “work” as processors 1 and 4. Using our metric, we get:

12 + 28 + 61 + 138 + 149 = 388
154 + 139 + 104 = 397
106 + 139 + 156 = 401

151 + 129 + 62 + 29 + 13 = 384

39

SIGGRAPH 2000 course on ”Rendering and Visualization in Parallel Environments”

One can see that some configurations will yield better load balancing than others but this is a limitation of the particular space
subdivision one chooses to implement, the more complex the subdivision one allows, the better load balancing but the harder it is
to implement a suitable load balancing scheme and the associated ray caster. Figure 12 plots the examples just described for the
naive approach. Figure 13 shows how well our load balancing scheme works for a broader set of processor arrangements.

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8

N
um

be
r

of
 c

ub
es

Processor Number

out of 4 processors
out of 8 processors

Figure 12:The graph shows the number of cubes per processor under naive load balancing.

100

200

300

400

500

600

700

800

1 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 c

ub
es

Processor Number

out of 2 processors
out of 3 processors
out of 4 processors
out of 8 processors

out of 10 processors

Figure 13: Load balancing measures for our algorithm. The graph shows the number of cubes the processor receives in our
algorithm.

6000

6500

7000

7500

8000

8500

9000

9500

10000

10500

11000

1 2 3 4

T
im

e
to

 R
en

de
r

(m
se

c)

Node Number

time to render with 4 processors

Figure 14:Naive load balancing on the Paragon. The graph shows the actual rendering times for 4 processors using the naive load
balancing.

These shortcomings of slabs let us to an alternative space decomposition structure previously used by Ma et al. [71, 72], the
Binary Space Partition(BSP) tree, originally introduced by Fuchs et al. [43].

40

SIGGRAPH 2000 course on ”Rendering and Visualization in Parallel Environments”

6000

6500

7000

7500

8000

8500

9000

9500

10000

10500

11000

1 2 3 4

T
im

e
to

 R
en

de
r

(m
se

c)

Node Number

time to render with 4 processors

Figure 15: Our load balancing on the Paragon. The graph shows the actual rendering times for 4 processors using our load
balancing.

Figure 16:An example of the partition scheme we used for load balancing. The bottom represents a possible decomposition for 8
nodes. Notice that a cut can be made several times over the same axis to optimize the shape of the decomposition.

6.6.3 The Parallel Ray Casting Rendering Pipeline

Compositing Cluster

The compositing nodes are responsible for regrouping all the sub-rays back together in a consistent manner, in order to keep image
correctness. This is only possible because composition is an associative operation, so if we have to sub-ray samples where one ends
where the other starts, it is possible to combine their samples into one sub-ray recursively until we have a value that constitutes the
full ray contribution to a pixel.

Ma et al. [72] use a different approach to compositing, where instead of having separate compositing nodes, the rendering
nodes switch between rendering and compositing. Our method is more efficient because we can use the special structure of the
sub-ray composition to yield a high performance pipeline, where multiple nodes are used to implement the complete pipeline
(see Figure 19). Also, the structure of compositing requires synchronized operation (e.g., there is an explicit structure to the

Figure 17:A cut through the partition accomplished using our load balancing scheme on an MRI head. It is easy to see that if a
regular partition scheme were used instead, as the number of processors increase, large number of processors would get just empty
voxels to render.

41

SIGGRAPH 2000 course on ”Rendering and Visualization in Parallel Environments”

Ray

00

010

000 001

010

011

A

B

C

D

E

F

G

H

Figure 18:Data partitioning shown in two dimensions. The dataset is partitioned into 8 pieces (marked A. . . H) in a canonical
hierarchical manner by the 7 lines (planes in 3D) represented by binary numbers. Once such a decomposition is performed, it is
relatively easy to see how the samples get composited back into a single value.

composition, that needs to be guaranteed for correctness purposes), and light weight computation, making it much less attractive
for parallelization over a large number of processors, specially on machines with slow communication compared to CPU speeds
(almost all current machines).

It is easy to see that compositing has a very different structure than rendering. Here, nodes need to synchronize at every step of
the computation, making the depth of the compositing tree a hard limit on the speed of the rendering. That is, if one uses2m nodes
for compositing, and it takestc time to composite two images, even without any synchronization or communication factor in, it
takes at leastmtc time to get a completely composited image.

A B C D E F G H

00 01

0

010 011000 001

Compositing Cluster

Rendering Cluster

Figure 19:The internal structure of one compositing cluster, one rendering cluster and their interconnection is shown. In PVR, the
communication between the compositing and the rendering clusters is very flexible, with several rendering clusters being able to
work together in the same image. This is accomplished by using a set of tokens that are handled by the first level of the compositing
tree in order to guarantee consistency. Because of its tree structure, one properly synchronized compositing cluster can work on
several images at once, depending on its depth. The compositing cluster shown is relative to the decomposition shown in Figure 18.

Fortunately, most of this latency can be hidden by pipelining the computation. Here, instead of sending one image at a time,
we can send images continuously into the compositing cluster, and as long as we send images at a rate lower than one for every
tc worth of time, the compositing cluster is able to composite those at full speed, and aftermtc times, the latency is fully hidden
from the computation. As can be seen for our discussion, this latency hiding process is very sensitive to the rate of images coming
in the pipeline. One needs to try to avoid “stalls” as much as possible. Also, one can not pipe more than the overall capacity of the
pipeline.

Several implications for real-time rendering can be extracted from this simple model. Even though the latency is hidden from
the computation, it is not hidden from the user, at least not totally. The main reason is the overall time that an image takes to
be computed. Without network overhead, if an image takestr time to be rendered by the rendering cluster, the first image of a
sequence takes (at least) timetr + mtc to be received by the user. Given that people can notice even very small latencies, our
latency budget for real-time volume rendering is extremely low and will definitely have to wait for the next generation of machines
to be build. We present a detailed account of the timings later in this chapter.

Going back to the previous discussion, we see that as long astr is larger thantc we don’t have anything to worry about with
respect to creating a bottleneck in the compositing end. As it turns out,tr is much larger thantc, even for relatively small datasets.
With this in mind, an interesting question is how to allocate the compositing nodes, with respect to size and topology.

The topology is actually fixed by the corresponding BSP-tree, that is, if the first level of the tree hasn = 2h images (if one image
per rendering node, thann would be the number of rendering nodes), than potentially the number of compositing nodes required

42

SIGGRAPH 2000 course on ”Rendering and Visualization in Parallel Environments”

might be as high as2h � 1. There are several reasons not to use that many compositing nodes. First, it is a waste of processors.
Second, the first-image latency grows with the number of processors in the compositing tree. Fortunately, we can lower the number
of nodes required in the compositing tree by a process known as virtualization. A general solution to this problem is proposed in
Section 6.9.

Types of Parallelism

Due to the fact that each rendering node gets a portion of the dataset, this type of parallelism is called “object-space parallelism”.
The structure of our rendering pipeline makes it possible to exploit other types of parallelism. For instance, by using more than a
single rendering cluster to compute an image, we are making use of “image-space parallelism” (in PVR, it is possible to specify
that each cluster compute disjoint scanlines of the same image; see [116] for the issues related to image-space parallelism). The
clustering approach coupled with the inherent pipeline parallelism available in the compositing process (because of its recursive
structure) gives rise to a third parallelism type, namely “time-space parallelism” or “temporal parallelism”. In the latter, we can
exploit multiple clusters by concurrently calculating sub-rays for several images at once, that can be sent down the compositing
pipeline concurrently. Here, it is important for the correctness of the images, that each composition step be done in lockstep, in
order to avoid mixing of images. It should be clear by now that there are several advantages to our separation of nodes into our two
types.

6.7 Lazy Sweep Ray Casting Algorithm

Lazy Sweep Ray Castingis a fast algorithm for rendering general irregular grids. It is based on the sweep-plane paradigm, and it is
able to accelerate ray casting for rendering irregular grids, including disconnected and non-convex (even with holes) unstructured
irregular grids with a rendering cost that decreases as the “disconnectedness” decreases. The algorithm is carefully tailored to
exploit spatial coherence even if the image resolution differs substantially from the object space resolution.

Lazy Sweep Ray Casting has several desirable properties, including its generality, (depth-sorting) accuracy, low memory con-
sumption, speed, simplicity of implementation and portability (e.g., no hardware dependencies).

The design of our LSRC method for rendering irregular grids is based on two main goals: (1) the depth ordering of the cells
should be correct along the rays corresponding to every pixel; and (2) the algorithm should be as efficient as possible, taking
advantage of structure and coherence in the data. With the first goal in mind, we chose to develop a new ray casting algorithm, in
order to be able to handle cycles among cells (a case causing difficulties for projection methods). To address the second goal, we
use a sweep approach, as did Giertsen [47], in order to exploit bothinter-scanlineandinter-ray coherence. Our algorithm has the
following advantages over Giertsen’s:

(1) It avoids the explicit transformation and sorting phase, thereby avoiding the storage of an extra copy of the vertices;

(2) It makes no requirements or assumptions about the level of connectivity or convexity among cells of the mesh; however, it
does take advantage of structure in the mesh, running faster in cases that involve meshes having convex cells and convex
components;

(3) It avoids the use of a hash buffer plane, thereby allowing accurate rendering even for meshes whose cells greatly vary in size;

(4) It is able to handle parallel and perspective projection within the same framework (e.g, no explicit transformations).

6.7.1 Performing the Sweep

Our sweep method, like Giertsen’s, sweeps space with a sweep-plane that is orthogonal to the viewing plane (thex-y plane), and
parallel to the scanlines (i.e., parallel to thex-z plane). See Figure 20.

Eventsoccur when the sweep-plane hits vertices of the meshS. But, rather than sorting all of the vertices ofS in advance,
and placing them into an auxiliary data structure (thereby at least doubling the storage requirements), we maintain an event queue
(priority queue) of an appropriate subset of the mesh vertices.

A vertexv is locally extremal(or simplyextremal, for short) if all of the edges incident to it lie in the (closed) halfspace above
or below it (iny-coordinate). A simple (linear-time) pass through the data readily identifies the extremal vertices.

We initialize the event queue with the extremal vertices, prioritized according to the magnitude of their inner product (dot
product) with the vector representing they-axis (“up”) in the viewing coordinate system (i.e., according to theiry-coordinates). We
do not explicitly transform coordinates. Furthermore, at any given instant, the event queue only stores the set of extremal vertices
not yet swept over, plus the vertices that are the upper endpoints of the edges currently intersected by the sweep-plane. In practice,
the event queue is relatively small, usually accounting for a very small percentage of the total data size. As the sweep takes place,
new vertices (non-extremal ones) will be inserted into and deleted from the event queue each time the sweep-plane hits a vertex
of S.

The sweep algorithm proceeds in the usual way, processing events as they occur, as determined by the event queue and by the
scanlines. We pop the event queue, obtaining the next vertex,v, to be hit, and we check whether or not the sweep-plane encounters
v before it reaches they-coordinate of the next scanline. If it does hitv first, we perform the appropriate insertions/deletions on
the event queue; these are easily determined by checking the signs of the dot products of edge vectors out ofv with the vector
representing they-axis. Otherwise, the sweep-plane has encountered a scanline. And at this point, we stop the sweep and drop

43

SIGGRAPH 2000 course on ”Rendering and Visualization in Parallel Environments”

Sweep Plane

Intersection with sweep plane

Z axis

Viewing Plane

Y axis

Scanline X axis

Figure 20: A sweep-plane (perpendicular to they-axis) used in sweeping 3-space.

into a two-dimensional ray casting procedure (also based on a sweep), as described below. The algorithm terminates once the last
scanline is encountered.

We remark here that, instead of doing a sort (iny) of all vertices ofS at once, the algorithm is able to take advantage of the
partial order information that is encoded in the mesh data structure. (In particular, if each edge is oriented in the+y direction, the
resulting directed graph is acyclic, defining a partial ordering of the vertices.) Further, by doing the sorting “on the fly”, using the
event queue, our algorithm can be run in a “lock step” mode that avoids having to sort and sweep over highly complex subdomains
of the mesh. This is especially useful, as we see in the next section, if the slices that correspond to our actual scanlines are relatively
simple, or the image resolution (pixel size) is large in comparison with some of the features of the dataset. (Such cases arise, for
example, in some applications of scientific visualization on highly disparate datasets.)

6.7.2 Processing a Scanline

When the sweep-plane encounters a scanline, the current sweep status data structure gives us a “slice” through the mesh in which
we must solve a two-dimensional ray casting problem. (See Figure 21.) LetS denote the polygonal (planar) subdivision at the
current scanline (i.e.,S is the subdivision obtained by intersecting the sweep-plane with the meshS.) In time linear in the size of
S, we can recover the subdivisionS (both its geometry and its topology), just by stepping through the sweep status structure, and
utilizing the local topology of the cells in the slice. In our implementation,S is actually not constructed explicitly, but only given
implicitly by the sweep status data structure, and thenlocally reconstructed as needed during the two-dimensional sweep (described
below).

1 2 3 4 5 6 7

Figure 21: Illustration of a sweep in one slice.

The two-dimensional problem is also solved using a sweep algorithm — now we sweep the plane with a sweep-line parallel to
thez axis. Events now correspond to vertices of the planar subdivisionS. At the time that we constructS, we could identify those
vertices in the slice that are locally extremal inS (i.e., those vertices that have edges only leftward inx or rightward incident on
them.), and insert them in the initial event queue. (The actual implementation just sorts along thex-axis, since the extra memory
overhead is negligible in 2D.) Thesweep-line statusis an ordered list of the edges ofS crossed by the sweep-line. The sweep-line
status is initially empty. Then, as we pass the sweep-line overS, we update the sweep-line status and the event queue at each
event when the sweep-line hits an extremal vertex, making insertions and deletions in the standard way. This is analogous to the
Bentley-Ottmann sweep that is used for computing line segment intersections in the plane [98]. We also stop the sweep at each

44

SIGGRAPH 2000 course on ”Rendering and Visualization in Parallel Environments”

of thex-coordinates that correspond to the rays that we are casting (i.e., at the pixel coordinates along the current scanline), and
output to the rendering model the sorted ordering (depth ordering) given by the current sweep-line status. We have noticed that the
choice of data structure used to maintain the sweep-line status can have a dramatic impact on the performance of the algorithm.

See Silva and Mitchell [115] for details.

6.8 Parallel Rendering of Irregular Grids

Here, we present a distributed-memory MIMD machine parallelization of the LSRC method. Our parallelization is a distributed-
memory parallelization, and each rendering node gets a only portion of the dataset, not the complete dataset.

The need for the parallelization of rendering algorithms for irregular-grid rendering is obvious, given the fact that irregular grids
are extremely large (as compared to regular grids), and their rendering is much less efficient. The largest irregular grids currently
being rendered are just breaking the 1,000,000 cell barrier, what would be equivalent to a 100-by-100-by-100 regular grid, if only
data sample points are taken into account. On the other hand, such a grid requires more than 50MB of memory, when its regular
counterpart only needs 1MB. Actually, regular grids of this size can be rendered by inexpensive workstations in real-time (i.e.,
using the Shear-Warp technique), while the irregular grids of this size would be almost out of reach just a year ago.

Actually, the sizes of irregular grids of interest of computational scientists are larger than one million cells, possibly starting
at two times that range. (This is subjective data, obtained by talking to researchers at Sandia National Labs during the summer
of 1996). Given that it takes us about 150 seconds to render a 500,000 cell complex, and assuming linear behavior (what is not
completely correct) it would takes us over 10 minutes to generate images of a 2,000,000 cell complex. What is not an unreasonable
amount of time, given that Ma [73] needed over 40 minutes to render a dataset over 10 times smaller.

But our goal is to develop a method that is both faster and scalable to larger and larger dataset. The main reason for this trust is
not really current dataset, but those upcoming ones, specially from the new breed of supercomputers, such as the ASCI TeraFlop
machine installed at Sandia National Labs. The ASCI machine has orders of magnitude more memory than the current Intel Paragon
installed there, even moreusablememory (i.e., not taking OS and network overhead into account). This will enable the generation
of extremely large grids, possibly in ranges of 10,000,000-100,000,000 cells or larger.

Part of this increase in dataset sizes can be offset by better algorithms, specially by further improvements in our rendering code
by complete implementation of our optimization ideas. But our experience with irregular grids, seems to show that only more
computing power can really offset the increase in dataset size.

The other main reason for the use of parallel machines comes from the pure size of the datasets. The largest workstations
available to us have 1GB–3GB of memory, what is very short of the 300GB–512GB of memory in the ASCI Tflop machine.
Several reasons indicate the visualization should be performed locally: the fact that very few workstations with more than a few
gigabytes of memory are available; moving 300GB of data in and out at ethernet, or even ATM OC-3 speeds is clearly infeasible;
disk transfer rates, even for reasonably large (and expensive) disk arrays are just too slow for this kind of data.

As all of the reasons pointed above for the use of the parallel machines that generated the dataset is not enough, we also need to
note that these simulations do not generate a single static volume, but in general, time dependent data is being generated and the
time steps can not, in general, be efficiently accessed (for obvious reasons).

With all of this in mind, we present our algorithm for rendering irregular grid data, in place, on distributed-memory MIMD
machines.

6.8.1 Previous Work

There has been very little work on rendering irregular grid data on distributed memory architectures. Overall parallel work on
rendering irregular grids has received relatively little attention. This might be due to the fact that rendering irregular grids is so
much harder than regular grids, that few people ever get to the point of being able to research parallel methods for irregular grids.

Uselton has parallelized his original ray tracing work (presented in [122]) in a shared memory multiprocessor SGI, and reported
that the implementation scales linearly up to 8 processors. Challinger [19] reports on a parallel algorithm for irregular grids,
implemented on a shared-memory BBN-2000 Butterfly. Giertsen [46] has also parallelized his sweep algorithm on a collection of
IBM RS/6000, using a master/slave scheme and total data replication in the nodes.

The most interesting work, by our perspective, is Ma [73], where a parallelization technique very similar to the one presented
here is proposed. It is unfortunate that he used a sequential ray casting technique that is shown to be at least two orders of magnitude
slower than the one we use. Because of this, he did not find any interesting bottlenecks of the parallelization technique.

His technique works by breaking up the original grid into multiple, disjoint cell complexes using Chaco [51], a graph-based
decomposition tool developed at Sandia National Labs. Chaco-based decompositions have several interesting and important prop-
erties for parallelization of computational methods. It is unclear, the extra overhead of using Chaco has actually any influence on
the rendering speed of the parallelization. Here, as in our parallel regular grid method presented in Section 6.6, we divide the nodes
into two classes: rendering and compositing nodes. The rendering nodes, compute each ray of an image, creating a set of stencils
(the rays may not be completely connected). After each ray is computed, they are sent to the compositing nodes for further sorting
and the final accumulation. Each compositing node is assigned a set of rays to be composited. He reports that because the rendering
takes so long, the compositing phase is negligible and he has not work any further on optimizing it.

6.8.2 Parallel LSRC

Overall the our algorithm is very similar to Ma’s. Continuing in the tradition of our regular grid work and the framework of our
PVR system, we divide the nodes into two relevant groups, rendering and compositing nodes. Our differences between our work

45

SIGGRAPH 2000 course on ”Rendering and Visualization in Parallel Environments”

and Ma’s are actually in the details of the rendering and compositing.

Dataset Decomposition

In order to subdivide the dataset among the nodes, we use a hierarchical decomposition method, with a similar flavor to our load
balancing scheme for regular grids. Starting with the bounding box of the complete cell complex, we start making cuts in this box,
taking two things into account: the aspect ratio of the cuts, and the number of vertices. At every step, we cut along the largest axis
in such a way as to break the number of vertices in half, in each stage of the cutting. because cells might belong to more a single
of these convex space decomposition “boxes”, we assign the cell to the box that has most of it (e.g., in the number of vertices, with
ties broken in some arbitrary, but consistent way).

The obvious now, is just to assign each processor to a each box. This is a way to minimize the total rendering time of the
complete irregular grid. Unfortunately, it is not clear that this is the right thing, given that one might want to create a rough picture
of the grid fast, then wait for more complex rendering. In the future we expect to be able to create a scattered decomposition, that
will have better properties in creating approximate renderings of the grids.

With the decomposition method just proposed, each processor should have roughly the same number of primitives, each of
which, approximately confined to a rectangular grid of almost bounded aspect ratio (because of the largest-axis cutting).

Rendering

The rendering performed at each node is just a variation of our sequential technique presented in Section 6.7. This is just a single
significant difference, instead of generating an image, every node generates astencildata-structure. Of course, all nodes work
concurrently on generating stencil scan-lines.

The stencil representation of a scan-line is just a linked-list of color and depth of cells, who have been lazily composited. That
is, if two stencils shared an end point (e.g.,(~a;~b) and(~b;~c)), they are composited into a single stencil(~a;~c), representing the whole
region. In the end of a scan-line rendering computation, each node potentially has a collection of stencils. Because of the process
of decomposing the dataset among the nodes, it is expected the stencil fragmentation is low. This is necessary in order to enable
fast communication for compositing.

Compositing

One solution for compositing would just to copy Ma’s technique, where nodes are responsible for certain scan-lines. This way the
rendering nodes could just send its collection of stencils for further sorting in the compositing nodes. In our case, we try to achieve
better performance by creating a tree of compositing nodes (such as the one we use for the regular case). Every compositing node
is responsible for a certain region of space (i.e., one of the original box decompositions proposed above), that belongs to a global
BSP-tree.

It is the responsibility of the rendering nodes to respect the BSP-tree boundaries and send the data to the correct compositing
nodes, possibly breaking stencils that are span across boundaries.

Once the data of each scan-line is received in the compositing nodes, the final depth sorting can be efficiently performed by
merging the stencils into a complete image. An efficient pipeline scheme can be implemented on a scan-line by scan-line basis,
with similar good properties as the one implemented image-by-image for the regular grid case.

6.9 General BSP-tree Compositing

A simple way of parallelizing rendering algorithms is to do it at the object-space level:i.e., divide the task of rendering different
objects among different rendering processors, and then compose the full images together. A large class of rendering algorithms
(although not all), in particular scan-line algorithms, can be parallelized using this strategy. Such parallel rendering architectures,
where renderers operate independently until the visibility stage, are calledsort-last (SL) architectures [85]. A fundamental ad-
vantage of SL architecture is the overall simplicity, since it is possible to parallelize a large class of existing rendering algorithms
without major modifications. Also, such architectures are less prone to load imbalance, and can be made linearly scalable by using
more renderers [83, 84]. One shortcoming of SL architectures is that very high bandwidth might be necessary, since a large number
of pixels have to be communicated between the rendering and compositing processors. Despite the potential high bandwidth re-
quirements, sort-last has been one of the most used, and successful parallelization strategies for both volume rendering and polygon
rendering, as shown by the several works published in the area [23, 128, 65, 72].

Here we present a general purpose, optimal compositing machinery that can be used as a black box for efficiently parallelizing
a large class of sort-last rendering algorithms. We consider sort-last rendering pipelines that are based on separating the rendering
processors from the compositing processors, similar to what was proposed previously by Molnar [83]. The techniques described
in this paper optimize overall performance and scalability without sacrificing generality or the ease of adaptability to different
renderers. Following Molnar, we propose to use a scan-line approach to image composition, and to execute the operations in a
pipeline as to achieve the highest possible frame rate. In fact, our framework inherits most of the salient advantages of Molnar’s
technique. The two fundamental differences between our pipeline and Molnar’s are:

(1) instead a fixed network of Z-buffer compositors, our approach uses a user-programmable BSP-tree based composition tree;

(2) we use general purpose processors and networks, instead of Molnar’s special purpose Z-comparators arranged in a tree.

46

SIGGRAPH 2000 course on ”Rendering and Visualization in Parallel Environments”

In our approach, hidden-surface elimination is not performed by Z-buffer alone, but instead by executing a BSP-tree model. This
way, we are able to offer extra flexibility, and instead of only providing parallelization of simple depth-buffer scan-line algorithms,
we are able to provide a general framework that adds support for true transparency, and general depth-sort scan-line algorithms.
In trying to extend the results of Molnar to general purposes parallel machines, we must deal with a processor allocation problem.
The basic problem is how to minimize the amount of processing power devoted to the compositing back-end and still provide
performance guarantees (i.e., frame rate guarantees) for the user. We propose a solution to this problem in the paper.

In our framework the user defines a BSP-tree, in which the leaves correspond to renderers (the renderers perform user-defined
rendering functions). Also, the user defines a data structure for each pixel, and a compositing function, that will be applied to
each pixel by the internal nodes of the BSP-tree previously defined. Given a pool of processors to be used for the execution of
the compositing tree, and a minimum required frame rate, our processor allocation algorithm partitions the compositing operations
among processors. The partition is chosen so as to minimize the number of processors without violating the frame-rate needs.
During rendering, the user just needs to provide a viewpoint (actually, for optimum performance, a sequence of viewpoints, since
our algorithm exploits pipelining). Uponexecutionof the compositing tree, messages are sent to the renderers specifying where to
send their images, so no prior knowledge of the actual compositing order is necessary on the (user) rendering nodes side. For each
viewpoint provided, acompleteimage will be generated, and stored at the processor that was allocated the root of the compositing
tree. The system is fully pipelined, and if no stalls are generated by the renderers, our system guarantees a frame rate at which the
user can collect the full images from the root processor.

6.9.1 Optimal Partitioning of the Compositing Tree

We can view the BSP tree as an expression tree, with compositing being the only operation. In our model of compositing clusters,
evaluation of the compositing expression is mapped on to atreeof compositing processessuch that each process evaluates exactly
one sub-expression. See Figure 22 for an illustration of such a mapping. The actual ordering of compositing under a BSP-tree
depends not only on the position of the nodes, but also on the viewing direction. So, during the execution phase, a specific
ordering has to be obeyed. Fortunately, given any partition of the tree, each subtree can still be executed independently. Intuitively,
correctness is achieved by having the nodes “fire up” in a on-demand fashion.

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

����
����
����
����
����

����
����
����
����
����

�������
�������
�������

�������
�������
�������

(a) (b)

Figure 22: (a) A BSP tree, showing a grouping of compositing operations and (b) the corresponding tree of compositing processes.
Each compositing process can be mapped to a different physical node in the parallel machine.

Such a decompositing is based on a model of the cost of the subtrees. For details on this, and the partitioning algorithm, shown
in Figure 23, see Ramakrishnan and Silva [99].

Practical Considerations

Algorithm partition provides a simple way of given a BSP-tree, and a performance requirement, given in terms of the frame rate,
how to divide up the tree in such a way as to optimize the use of processors. Several issues, including machine architecture
bottlenecks, such as synchronization, interconnection bandwidth, mapping the actual execution to a specific architecture (e.g., a
mesh-connected MIMD machine) were left out of the previous discussion. We now describe how Algorithmpartition can be
readily adapted to account for some of the above issues in practice.

Compositing Granularity: Note that there is nothing in the model that requires that full images be composited and transfered
one at a time. Actually, one should take into consideration when determining the unit size of work, and communication, hardware
constraints such as memory limitations, and bandwidth requirements. So, for instance, instead of messages being a full image, it
might be better to send a pre-defined number of scan-lines. Notice that in order for images of arbitrary large size to be able to be
computed, the rendering algorithm must also be able to generate the images in scan-line order.

47

SIGGRAPH 2000 course on ”Rendering and Visualization in Parallel Environments”

Algorithm partition(u)
/* The algorithm marks the beginning of partitions in

the subtree ofG rooted atu. If more vertices,
can be added to the root partition, the algorithm
returns the size of the root partition.
Otherwise, the algorithm returns0. */

1. if (arity(u) = 2) then /* u is a binary vertex */
2. w1 := partition(left child(u));
3. w2 := partition(right child(u));
4. w :=w1 + w2 + 1;
5. if (w > K) then
6. if (w1 � w2) then
7. Mark right child(u) as start of new partition
8. w :=w1 + 1;
9. else
10. Markleft child(u) as start of new partition
11. w :=w2 + 1;
12. else if (arity(u) = 1) then /* u is a unary vertex */
13. w := partition(child(u)) + 1;
14. else /* u is a leaf */
15. w := 1;
16. if (w = K) then
17. Marku as a start of new partition
18. return(0);
19. else
20. return(w);

Figure 23: Algorithmpartition

Communication Bandwidth: Of course, in order to achieve the desired frame rate, enough bandwidth for distributing the images
during composition is strictly necessary. Givenp processors, each performingk compositing operations, the overall aggregate
bandwidth required is proportional top(k+2). It should be clear that askmax increases, the actual bandwidth requirement actually
decreases (both for the case of a SL-full, as well as a SL-sparse architecture) since askmax increases the number of processors
required decreases. This decrease in bandwidth is due to the fact that compositing computation are performed locally, inside each
composite processor, instead of being sent over the network. If one processor performs exactlykmax compositing operations, it
needskmax + 2 units of bandwidth, as opposed to3kmax when using one processor per compositing operation— a bandwidth
savings of almost a factor of three!

Another interesting consideration related to bandwidth is the fact that our messages tend to be large, implying that our method
operates on the best range of the message size versus communication bandwidth curve. For instance, for messages smaller than 100
bytes the Intel Paragon running SUNMOS achieve less than 1 MB/sec bandwidth, while for large messages (i.e., 1MB or larger),
it is able to achieve over 160MB/sec. (This is very close to 175MB/sec, which is the peak hardware network performance of the
machine.) As will be seen in Section 6.9.2, our tree execution method is able to completely hide the communication latency, while
still using large messages for its communication.

Latency and Subtree Topology: As will be seen in Section 6.9.2, the whole process is pipelined, with a request-based paradigm.
This greatly reduces the overhead of any possible synchronization. Actually, given enough compositing processors, the overall
time is only dependent on the performance of the rendering processors. Also, note that the actualshapeof the subtree that a given
processor gets is irrelevant, since the execution of the tree is completely pipelined.

Architectural Topology Mapping: We do not provide any mechanism for optimizing the mapping from our tree topology to the
actual processors in a given architecture. With recent advancements in network technology, it is much less likely that the use of
particular communication patterns improve the performance of parallel algorithms substantially. In new architectures, the point-
to-point bandwidth in access of 100–400 MB/sec are not uncommon, while in the old days of the Intel Delta, it was merely on
the order of 20 MB/sec. Also, network switches, with complex routing schemes, are less likely to make neighbor communication
necessary. (Actually, the current trend is not to try to exploit such patterns since new fault-handling and adaptive routers usually
make such tricks useless.)

Limitations of Analytical Cost Model: Even though we can support both SL-full and SL-sparse architecture, our model does not
make any distinction of the work that a given compositing processor is performing based on the depth of its compositing nodes.
This is one of the limitations of our analytical formulation. However, the experimental results indicate that this limitation does not
seem have any impact on the use of our partitioning technique in practice. Actually, frame-to-frame differences might diminish the
concrete advantage of techniques that try to optimize for this fact.

48

SIGGRAPH 2000 course on ”Rendering and Visualization in Parallel Environments”

6.9.2 Optimal Evaluation

In the previous section, we described techniques to partition the set of compositing operations and allocate one processor to each
partition, such that the various costs of the compositing pipeline can be minimized. We now describe efficient techniques for
performing the compositing operations within each processor.

2I

I6

I3 I4

5I1I

I1 2

I3

I4

I5

I6

I

(a) (b)

Figure 24: (a) A compositing tree and (b) its corresponding associative tree.

Space-Optimal Sequential Evaluation of Compositing Trees

Storage is the most critical resource for evaluating a compositing tree. We need 4MB of memory to store an image of size512 �
512, assuming 4-bytes each for RGB and� values per pixel. Naive evaluation of a compositing tree withN nodes may require
intermediate storage for up toN images.

We now describe techniques, adapted from register allocation techniques used in programming language compilation, to mini-
mize the total intermediate storage required. Figure 24a shows a compositing tree for compositing imagesI1 throughI6. We can
consider the tree as representing the expression

(I1�(I2�(I3�I4)))�(I5�I6) (12)

where� is the compositing operator. Since imagesI1 throughI6 are obtained from remote processors, we need to copy these
images locally into intermediate buffers before applying the compositing operator. The problem now is to sequence these operations
and reuse intermediate buffers such that the total number of buffers needed for evaluating the tree is minimized.

We encounter a very similar problem in a compiler, while generating code for expressions. Consider a machine instruction (such
as integer addition) that operates only on pairs of registers. Before this operation can be performed on operands stored in the main
memory, the operands must be loaded into registers. We now describe how techniques to generate optimal code for expressions can
be adapted to minimize intermediate storage requirements of a compositing process. The number of registers needed to evaluate an
expression tree can be minimized, using a simple tree traversal algorithm [5, pages 561–562]. Using this algorithm, the compositing
tree in Figure 24a can be evaluated using3 buffers. In general,O(logN) buffers are needed to evaluate a compositing tree of size
N . However, by exploiting the algebraic properties of the operations, we can further reduce the number of buffers needed— to
O(1). Since� is associative, evaluating expression (12) is equivalent to evaluating the expression:

((((I1�I2)�I3)�I4)�I5)�I6 (13)

The above expression is represented by the compositing tree in Figure 24b, called anassociative tree[109]. The associative tree
can be evaluated using only2 buffers.

Again, for full details, we refer the reader to the full paper [99].

6.9.3 Implementation

In this section, we sketch the implementation of our compositing pipeline. We implemented our compositing back-end in the PVR
system [114]. PVR is a high-performance volume rendering system, and it is freely available for research purposes. Our main
reason for choosing PVR was that it already supported the notion of separate rendering and compositing clusters, as explained in
[113, Chapter 3]. The basic operation is very simple. Initially, before image computation begins, all compositing nodes receive a
BSP-tree defining the compositing operations based on the object space partitioning chosen by the user. Each compositing node, in
parallel, computes its portion of the compositing tree, and generates a view-independent data structure for its part. Image calculation
starts when all nodes receive a sequence of viewpoints.

The rendering nodes, simply run the following simple loop:

49

SIGGRAPH 2000 course on ”Rendering and Visualization in Parallel Environments”

For each (viewpoint v)
ComputeImage(v);
p = WaitForToken();
SendImage(p);

Notice that the rendering nodes do not need any explicit knowledge of parallelism; in fact, each node does not even need to
know, a priori, where its computed image is to be sent. Basically, the object space partitioning and the BSP-tree takes care of all
the details of parallelization.

The operation of the compositing nodes is a bit more complicated. First, (for each view) each compositing processor computes
(in parallel, using its portion of the compositing tree) an array with indices of the compositing operations assigned to it as a sequence
of processor numbers from which it needs to fetch and compose images. The actual execution is basically an implementation of the
pre-fetching scheme proposed here, with eachread request being turned into aPVRMSGTOKENmessage, where the value of
the token carries its processor id. So, the basic operation of the compositing node is:

For each (viewpoint v)
CompositeImages(v);
p = WaitForToken();
SendImage(p);

Notice that there is no explicit synchronization point in the algorithm. All the communication happens bottom-up, with requests
being sent as early as possible (in PVR, tokens are sent asynchronously, and in most cases, the rendering nodes do not wait for the
tokens), and speed is determined by the slowest processor in the overall execution, effectively pipelining the computation. Also, one
can use as many (or as few) nodes one wants for the compositing tree. That is, the user can determine the rendering performance
for a given configuration, and based on the time to composite two images it is straightforward simple to scale our compositing
back-end for his particular application.

Acknowledgments

Numerous individuals have contributed to all parts of the material presented here.
We want to thank the members of the Personal Workstation team at IBM Research: Randy Moulic, Nick Dono, Dan Dumarot,

Cliff Pickover, Del Smith, and Dave Stevenson.
Furthermore, we would like to thank Michael Doggett and Michael Meißner of the Computer Graphics Lab at the University of

Tübingen for proof readings and good suggestions to improve the text on parallel architectures and parallel programming.
For the parts on parallel volume rendering, Claudio is deeply indebted to A.E. Kaufman, J.S.B. Mitchell, C. Pavlakos, C.R. Ra-

makrishnan, who co-authored the original research he is briefly reporting in this tutorial. Most of this research was supported
by CNPq-Brazil under a Ph.D. fellowship, by Sandia National Labs and the Department of Energy, and by the National Science
Foundation (NSF) postdoctoral grant CDA-9626370.

50

SIGGRAPH 2000 course on ”Rendering and Visualization in Parallel Environments”

Appendix

Appendix A: Literature and Internet Resources on Parallel Programming

Books

� Bil Lewis, Daniel J. Berg - Multithreaded Programming with Java Technology, 1999.
Covers Java thread programming.

� D. Butenhof - Programming with POSIX Threads, Addison-Wesley, 1997.
The pthread part of this course is based on this book. Besides being a good introduction into threading, it offers many details
and knowledge of how to use threads.

� S. Kleiman, D. Shah, B. Smaalders - Programming with threads, Prentice Hall, 1995. Covers POSIX threads.

� B. Lewis, D. Berg - Threads Primer: A guide to multithreaded programming, Prentice Hall, 1995. Covers UI, POSIX,
OS/2, and WIN32 threads.

� B. Nichols, D. Buttlar, J. Farrel - Pthread programming, O’Reilly, 1996. Covers POSIX threads.

� S. Norton, M. Depasquale, M. Dipasquale - Thread Time: The Multithreaded Programming Guide, Prentice Hall, 1997.
Covers POSIX threads.

� A. Geist, A. Beguelin, J. Dongarra, W. Jian, R. Machek, and V. Sunderam - PVM: Parallel Virtual Machine, MIT Press,
1994. Covers PVM3.

Webpages

� http://www.openmp.org - OpenMP home page

� http://www.kai.com/parallel/openmp.html - Kuck & Assoc. OpenMP page

� http://www.mpi-forum.org - MPI Forum home page

� http://www.lambdacs.com/newsgroup/FAQ.html- thread FAQ list

� http://www.best.com/ bos/threads-faq/- thread FAQ list

� http://cseng.awl.com/bookdetail.qry?ISBN=0-201-63392-2&ptype=1482- Additional information on Dave Butenhof book
(e.g. source code)

� http://liinwww.ira.uka.de/bibliography/Os/threads.html - thread bibliography

� http://www.nas.nasa.gov/Software/NPB/- results of parallel benchmarks

� http://www.mit.edu:8001/afs/sipb/user/proven/XMOSAIC/
pthreads.html - pthread pages at MIT

� http://www.netlib.org/ fpvm3,mpig - a source for documents and packages for MPI and PVM.

� http://elib.zib.de - also a popular source for documents, packages, and more.

� http://www.erc.msstate.edu/mpi/- MPI home page at Mississippi State.

� http://www.mcs.anl.gov/mpi- MPI home page at Argonne National Lab.

� http://www.epm.ornl.gov/pvm - PVM home page at Oak Ridge National Lab.

Newsgroups

� comp.parallel - general newsgroup on parallel stuff

� comp.parallel.pvm - newsgroup on PVM

� comp.parallel.mpi - newsgroup on MPI

� comp.programming.threads- newsgroup on threading

� comp.sys.sgi.bugs- newsgroups for threading problems on SGI workstations

� comp.sys.sgi.fgraphics, hardware, miscg - if the previous newsgroup does not help....

51

SIGGRAPH 2000 course on ”Rendering and Visualization in Parallel Environments”

Appendix B: Tiny Thread Glossary

Barrier - All participating execution entities are synchronizing at a particular point within the parallel application. This point is
called a barrier.

Cache-coherent- Modern processors use caches to speed-up memory access. On multi-processor systems this can result in
different views of memory content for the individual threads. If a system is cache-coherent, special communication protocols
ensure the same memory view. This system is called cache-coherent.

Concurrency - Parallel execution of programs. This parallel execution can be either time-sliced (on single processor machines),
or really parallel on multi-processors.

Condition - A signaling mechanism to indicate the state of a shared resource.
Kernel threads/scheduling- A kernel thread is a execution entity which is scheduled by the operating system kernel (one-to-one

mapping). With kernel thread scheduling, each pthread is known to the operating system, hence it can be scheduled (and executed)
concurrently.

Light-weight process- Physical scheduling entity of an operating system. On some systems, scheduled threads are mapped on
light-weight-processes for execution. On Sun/Solaris systems, the kernel threads are called light-weight processes.

Message-Passing- Execution entities communicate by sending message exchanged via a interconnection network.
Mixed-model scheduling- Scheduling model inbetween user and kernel threads. Some scheduling tasks are performed by the

thread library, some by the operating system kernel (many-to-few mapping).
Mutex - Synchronization mechanism for mutual exclusion of critical sections in a parallel program.
NUMA - Non-Uniform Memory Access - Main memory is distributed to the different hierarchy stages. Therefore, the memory

access times are varying, depending on the processor and the physical location of the memory address.
Over-subscribing - More threads than processors are started. This is only efficiently possible with mixed-model scheduling or

with user threads.
Preemption - A process, or a thread is disabled from execution (preempted), because the scheduling algorithm decided that

another process/thread is more important than the current.
Process- An execution entity, containing a whole execution context (private address space, program counter, etc.)
Pthread - Thread standard.
Recycle thread- After performing its task, a new task is assigned to the thread; the thread is recycled.
Scheduling - Decision which execution entity can use particular resources (e.g. periphery devices, processors, etc).
Semaphore- Synchronization mechanism similar to mutexes. In contrast to binary mutexes, semaphores can have more than

two states (they are “counting”).
Shared-memory Paradigm- Execution entities communicate via memory which is accessible from all entities.
Synchronization - If a shared resources is needed by different threads, their access must be handled consistantly. The threads

need to agree on an order of access to the resource.
Thread - Control flow entity within a process. Threads of the same process share parts of the execution context (such as address

space). Therefore, context switching, creation and destruction of a thread is much faster than for a process.
UMA - Uniform Memory Access - Access times to main memory are the same for all processors in a system.
User thread/scheduling- Execution entity of a thread library. The library itself is scheduling the user thread (many-to-one

mapping). Practically this means that only one thread at a time is known to the operating system, hence only one thread can be
executed at a time.

References

[1] Serial storage architecture: A technology overview, version 3.0. San Jose, August 1995.

[2] Highly-parallel system architecture vs. the intel 440lx architecture in the workstation market, October 1997.
http://www.compaq.com/support/techpub/whitepaper/ecg0491097.html.

[3] Accelerated graphics port interface specification, May 1998. http://www.intel.com/pc-supp/platform/agfxport.

[4] G. Abram and H. Fuchs. Vlsi architectures for computer graphics. In G. Enderle, editor,Advances in Computer Graphics I,
pages 6–21, Berlin, Heidelberg, New York, Tokyo, 1986. Springer-Verlag.

[5] A.V. Aho, R. Sethi, and J.D. Ullman.Compilers — Principles, Techniques, and Tools. Addison Wesley, 1988.

[6] K. Akeley. Realityengine graphics. InComputer Graphics (Proc. Siggraph), pages 109–116, August 1993.

[7] K. Akeley and T. Jermoluk. High-performance polygon rendering.Computer Graphics (Proc. Siggraph), 22(4):239–246,
August 1988.

[8] R. Avila, L. Sobierajski, and A. Kaufman. Towards a comprehensive volume visualization system. InIEEE Visualization
’92, pages 13–20. IEEE CS Press, 1992.

[9] F. Bellosa, M. Gente, and C. Koppe. Vorlesung Programmierung Paralleler Systeme. Technical Report IMMD-IV, Computer
Science Department, University of Erlangen-Nuremberg, 1995.

52

SIGGRAPH 2000 course on ”Rendering and Visualization in Parallel Environments”

[10] J. F. Blinn. Light reflection functions for simulation of clouds and dusty surfaces. InComputer Graphics (SIGGRAPH ’82
Proceedings), pages 21–29, July 1982.

[11] W. Blochinger, W. Küchlin, and A. Weber. The Distributed Object-Oriented Threads System dots. InFifth International
Symposium on Solving Irregularly Structured Problems in Parallel (IRREGULAR ’98), volume LNCS 1457 ofLecture Notes
in Computer Science. Springer-Verlag, 1998.

[12] Architectural Review Board.OpenGL Reference Manual. Addison-Wesley, 1992.

[13] OpenMP Architecture Review Board. OpenMP API. www.openmp.org/index.cgi?specs.

[14] OpenMP Architecture Review Board. OpenMP FAQ. www.openmp.org/index.cgi?faq.

[15] D. Butenhof.Programming with POSIX Threads. Addison Wesley, Reading, Mass., 1st edition, 1997.

[16] E. Camahort and I. Chakravarty. Integrating volume data analysis and rendering on distributed memory architectures. In
1993 Parallel Rendering Symposium Proceedings, pages 89–96. ACM Press, October 1993.

[17] Ingrid Carlbom. Optimal filter design for volume reconstruction and visualization. InIEEE Visualization ’93, pages 54–61,
1993.

[18] L. Carpenter. The a-buffer, an antialiased hidden surface method.Computer Graphics (Proc. Siggraph), 18(3):125–138,
1985.

[19] J. Challinger. Scalable parallel volume raycasting for nonrectilinear computational grids. In1993 Parallel Rendering
Symposium Proceedings, pages 81–88, 1993.

[20] Earl Coddington.An Introduction to Ordinary Differential Equations. Prentice-Hall, 1961.

[21] M. Cox and P. Hanrahan. Depth complexity in object-parallel graphics architectures. InProc. 7th Eurographics Workshop
on Graphics Hardware, pages 204–222, Cambridge (UK), 1992.

[22] Roger Crawfis and Nelson Max. Direct volume visualization of three-dimensional vector fields.1992 Workshop on Volume
Visualization, pages 55–60, 1992.

[23] T. W. Crockett. Parallel rendering. In A. Kent and J. G. Williams, editors,Encyclopedia of Computer Science and Technology,
volume 34, Supp. 19, A., pages 335–371. Marcel Dekker, 1996. Also available as ICASE Report No. 95-31 (NASA CR-
195080), 1996.

[24] T.W. Crockett and T. Orloff. A parallel rendering algorithm for mimd architectures. Technical Report ICASE-Report 91-3,
Institute for Computer Science and Engineering, NASA Langley Research Center, 1991.

[25] John Danskin and Pat Hanrahan. Fast algorithms for volume ray tracing.1992 Workshop on Volume Visualization, pages
91–98, 1992.

[26] M. Deering and S.R. Nelson. Leo: A system for cost effective 3d shaded graphics. InComputer Graphics (Proc. Siggraph),
pages 101–108, August 1993.

[27] S. Demetrescu. High-speed image rasterization using scan line access memories. In H. Fuchs, editor,Proc. Chapel Hill
Conference on VLSI, pages 221–243, 1985.

[28] Robert A. Drebin, Loren Carpenter, and Pat Hanrahan. Volume rendering. In John Dill, editor,Computer Graphics (SIG-
GRAPH ’88 Proceedings), volume 22, pages 65–74, August 1988.

[29] R. Eigenmann, B. Kuhn, T. Mattson, and R. Menon. Introduction to OpenMP. InSuperComputing 1998, 1998.

[30] D. Ellsworth. A new algorithm for interactive graphics on multicomputers.IEEE Computer Graphics & Applications, pages
33–40, July 1994.

[31] A. Barkans et al. Guardband clipping method and apparatus for 3d graphics display system. U.S. Patent 4,888,712. Issued
Dec 19, 1989.

[32] D. Clark et al. An analysis of tcp processing overhead.IEEE Communications Magazine, pages 23–29, June 1989.

[33] H. Fuchs et al. Pixel-planes 5: A heterogeneous multiprocessor graphics system using processor-enhanced memories.
Computer Graphics (Proc. Siggraph), 23(3):79–88, July 1989.

[34] I. Sutherland et al. A characterization of ten hidden surface algorithms.ACM Computing Surveys, 6(1):1–55, March 1974.

53

SIGGRAPH 2000 course on ”Rendering and Visualization in Parallel Environments”

[35] J. Eyles et al. Pixelflow: The realization. InProc. 1997 Siggraph/Eurographic Workshop on Graphics Hardware, pages
57–68, New York, 1997. ACM Press.

[36] J. Foley et al.Computer Graphics: Principles and Practice. Addison Wesley, 2nd edition, 1990.

[37] M. Deering et al. The triangle processor and normal vector shader: A vlsi system for high-performance graphics.Computer
Graphics (Proc. Siggraph), 12(2):21–30, August 1988.

[38] N. Boden et al. Myrinet: A gigabit-per-second local-area network.IEEE Micro, pages 29–36, February 1995.

[39] S. Molnar et al. A sorting classification of parallel rendering.IEEE Computer Graphics & Applications, pages 23–32, July
1994.

[40] James D. Foley, Andries van Dam, Steven K. Feiner, and John F. Hughes.Computer Graphics, Principles and Practice,
Second Edition. Addison-Wesley, Reading, Massachusetts, 1990. Overview of research to date.

[41] MPI Forum. Mpi: A message-passing interface standard.International Journal of Supercomputer Applications, 8(3/4):165–
416, 1994.

[42] MPI Forum. MPI-2: Extensions to the Message-Passing Interface. Technical Report MPI 7/18/97, Message-Passing Interface
Forum, 1997.

[43] H. Fuchs, Z. M. Kedem, and B. F. Naylor. On visible surface generation by a priori tree structures. InComputer Graphics
(SIGGRAPH ’80 Proceedings), pages 124–133, July 1980.

[44] A. Geist, A. Beguelin, J. Dongarra, W. Jian, R. Machek, and V. Sunderam.PVM: Parallel Virtual Machine. MIT Press,
1994.

[45] G. Geist, J. Kohl, and P. Papdopoulos. PVM and MPI: A Comparison of Features. InCalculateurs Paralleles, volume 8(2),
1996.

[46] C. Giertsen and J. Petersen. Parallel volume rendering on a network of workstations.IEEE Computer Graphics and Appli-
cations, 13(6):16–23, 1993.

[47] Christopher Giertsen. Volume visualization of sparse irregular meshes.IEEE Computer Graphics and Applications,
12(2):40–48, March 1992.

[48] A. Glassner, editor.An Introduction to Ray Tracing. Academic Press, 1989.

[49] Andrew Glassner.Principles of Digital Image Synthesis (2 Vols). Morgan Kaufmann Publishers, Inc. ISBN 1-55860-276-3,
San Francisco, CA, 1995.

[50] Heinrich Müller and Michael Stark. Adaptive generation of surfaces in volume data.The Visual Computer, 9(4):182–199,
January 1993.

[51] B. Hendrickson and R. Leland. The chaco user’s guide (version 1.0). Tech. Rep. SAND93-2339, Sandia National Laborato-
ries, Albuquerque, N.M., 1993.

[52] J. Hennesy and D. Paterson.Computer Architecture: A Quantitative Approach. Morgan-Kaufmann, 1990.

[53] Hewlett-Packard. HP 9000 V2600 Enterprise Server. Technical report, Hewlett-Packard, 1999.

[54] Hewlett-Packard. HP 9000 N4000 Server. Technical report, Hewlett-Packard, 2000.

[55] W. Hsu. Segmented ray casting for data parallel volume rendering. In1993 Parallel Rendering Symposium Proceedings,
pages 7–14. ACM Press, October 1993.

[56] M. Hu and J. Foley. Parallel processing approaches to hidden-surface removal in image space.Computers & Graphics,
9(3):303–317, 1985.

[57] J. Hubbell. Network rendering. InAutodesk University Sourcebook Vol. 2, pages 443–453. Miller Freeman, 1996.

[58] James T. Kajiya. The rendering equation. In David C. Evans and Russell J. Athay, editors,Computer Graphics (SIGGRAPH
’86 Proceedings), volume 20, pages 143–150, August 1986.

[59] James T. Kajiya and Brian P. Von Herzen. Ray tracing volume densities. In Hank Christiansen, editor,Computer Graphics
(SIGGRAPH ’84 Proceedings), volume 18, pages 165–174, July 1984.

[60] Arie E. Kaufman.Volume Visualization. IEEE Computer Society Press, ISBN 908186-9020-8, Los Alamitos, CA, 1990.

54

SIGGRAPH 2000 course on ”Rendering and Visualization in Parallel Environments”

[61] S. Kleiman, D. Shah, and B. Smaalders.Programming With Threads. Prentice Hall, 1995.

[62] M. Kumanoya. Trends in high-speed dram architectures.IEICE Trans. Electron., E79-C(4), April 19.

[63] Philippe Lacroute and Marc Levoy. Fast volume rendering using a shear–warp factorization of the viewing transformation.
In Andrew Glassner, editor,Proceedings of SIGGRAPH ’94 (Orlando, Florida, July 24–29, 1994), Computer Graphics
Proceedings, Annual Conference Series, pages 451–458. ACM SIGGRAPH, ACM Press, July 1994. ISBN 0-89791-667-0.

[64] J. Laudon and D. Lenoski. The SGI Origin: A ccNUMA Highly Scalable Server. In24th Annual International Symposium
on Computer Architecture (ISCA-97), pages 241–251, 1997.

[65] T. Lee, C. Raghavendra, and J. Nicholas. Image composition methods for sort-last polygon rendering on 2d mesh architec-
tures. InIEEE/ACM Parallel Rendering Symposium ’95, pages 55–62, 1995.

[66] Marc Levoy. Display of surfaces from volume data.IEEE Computer Graphics and Applications, 8(3):29–37, May 1988.

[67] Marc Levoy. Efficient ray tracing of volume data.ACM Transactions on Graphics, 9(3):245–261, July 1990.

[68] Marc Levoy. Volume rendering by adaptive refinement.The Visual Computer, 6(1):2–7, February 1990.

[69] B. Lewis and D. J. Berg.Threads Primer: A Guide to Multithreaded Programming. Prentice Hall, 1996.

[70] William E. Lorensen and Harvey E. Cline. Marching cubes: A high resolution 3D surface construction algorithm. In
Maureen C. Stone, editor,Computer Graphics (SIGGRAPH ’87 Proceedings), volume 21, pages 163–169, July 1987.

[71] K. Ma, J. Painter, C. Hansen, and M. Krogh. A data distributed parallel algorithm for ray-traced volume rendering. In1993
Parallel Rendering Symposium Proceedings, pages 15–22. ACM Press, October 1993.

[72] K. Ma, J. Painter, C. Hansen, and M. Krogh. Parallel volume rendering using binary-swap compositing.IEEE Computer
Graphics and Applications, 14(4):59–68, 1994.

[73] Kwan-Liu Ma. Parallel volume rendering for unstructured-grid data on distributed memory machines. InIEEE/ACM Parallel
Rendering Symposium ’95, pages 23–30, 1995.

[74] S. R. Marschner and R. J. Lobb. An evaluation of reconstruction filters for volume rendering. InIEEE Visualization ’94,
pages 100–107, 1994.

[75] Nelson Max. Optical models for direct volume rendering.IEEE Transations on Visualization and Computer Graphics,
1(2):99–108, June 1995.

[76] Nelson Max, Roger Crawfis, and Barry Becker. New techniques in 3D scalar and vector field visualization. InFirst Pa-
cific Conference on Computer Graphics and Applications. Korean Information Science Society, Korean Computer Graphics
Society, August 1993.

[77] Nelson Max, Pat Hanrahan, and Roger Crawfis. Area and volume coherence for efficient visualization of 3D scalar functions.
In Computer Graphics (San Diego Workshop on Volume Visualization), pages 27–33, November 1990.

[78] Nelson L. Max. Efficient light propagation for multiple anisotropic volume scattering. InFifth Eurographics Workshop on
Rendering, pages 87–104, Darmstadt, Germany, June 1994.

[79] SUN Microsystems. The Ultra Enterprise 450 Architecture. Technical report, SUN Microsystems, 1997.

[80] SUN Microsystems. Sun Enterprise 10000 Server. Technical report, SUN Microsystems, 1998.

[81] SUN Microsystems. The Sun Enterprise 3500-6500 Server: Architecture and Implementation. Technical report, SUN
Microsystems, 1998.

[82] James V. Miller, David E. Breen, William E. Lorensen, Robert M. O’Bara, and Michael J. Wozny. Geometrically deformed
models: A method for extracting closed geometric models from volume data. In Thomas W. Sederberg, editor,Computer
Graphics (SIGGRAPH ’91 Proceedings), volume 25, pages 217–226, July 1991.

[83] S. Molnar. Combining Z-buffer engines for higher-speed rendering. InAdvances in Computer Graphics Hardware III, pages
171–182, 1988.

[84] S. Molnar. Image Composition Architectures for Real-Time Image Generation. Ph.D. thesis, University of North Carolina,
Chappel Hill, 1991.

[85] S. Molnar, M. Cox, D. Ellsworth, and H. Fuchs. A sorting classification for parallel rendering.IEEE Computer Graphics
and Applications, 14(4):23–32, 1994.

55

SIGGRAPH 2000 course on ”Rendering and Visualization in Parallel Environments”

[86] C. Montani, R. Perego, and R. Scopigno. Parallel volume visualization on a hypercube architecture. In1992 Workshop on
Volume Visualization Proceedings, pages 9–16. ACM Press, October 1992.

[87] J. Montrym. Infinite reality: A real-time graphics system. InComputer Graphics (Proc. Siggraph), pages 293–302, August
1997.

[88] C. Mueller. The sort-first rendering architecture for high-performance graphics. InProc. 1995 Symposium on Interactive 3D
Graphics, pages 75–84, New York, 1995. ACM Press.

[89] Henry Neeman. A decomposition algorithm for visualizing irregular grids. InComputer Graphics (San Diego Workshop on
Volume Visualization), pages 49–56, November 1990.

[90] U. Neumann. Parallel volume-rendering algorithm performance on mesh-connected multicomputers. In1993 Parallel
Rendering Symposium Proceedings, pages 97–104. ACM Press, October 1993.

[91] B. Nichols, D. Buttlar, and J. Proulx Farrel.Pthreads Programming. O’Reilly & Associates, Inc., Sebastopol, 1st edition,
1996.

[92] J. Nieh and M. Levoy. Volume rendering on scalable shared-memory mimd architectures. In1992 Workshop on Volume
Visualization Proceedings, pages 17–24. ACM Press, October 1992.

[93] Gregory M. Nielson and Bernd Hamann. The asymptotic decider: Removing the ambiguity in marching cubes. InVisual-
ization ’91, pages 83–91, 1991.

[94] S. Norton, M. Depasquale, and M. Dipasquale.Thread Time: The MultithreadedProgramming Guide. Prentice Hall, 1997.

[95] M. Olano and T. Greer. Triangle scan conversion using 2d homogeneous coordinates. InProc. 1997 Siggraph/Eurographic
Workshop on Graphics Hardware, pages 89–96, New York, 1997. ACM Press.

[96] J. Pineda. A parallel algorithm for polygon rasterization.Computer Graphics (Proc. Siggraph), 22(4):17–20, August 1988.

[97] Thomas Porter and Tom Duff. Compositing digital images. In Hank Christiansen, editor,Computer Graphics (SIGGRAPH
’84 Proceedings), volume 18, pages 253–259, July 1984.

[98] F. P. Preparata and M. I. Shamos.Computational Geometry: An Introduction. Springer-Verlag, New York, NY, 1985.

[99] C.R. Ramakrishnan and C.T. Silva. Optimal processor allocation for sort-last compositing under bsp-tree ordering, submitted
for publication, 1997.

[100] D. Roble. A load balanced parallel scanline z-buffer algorithm for the ipsc hypercube. InProc. Pixim ’88, pages 177–192,
Paris (France), October 1988.

[101] Paolo Sabella. A rendering algorithm for visualizing 3D scalar fields. In John Dill, editor,Computer Graphics (SIGGRAPH
’88 Proceedings), volume 22, pages 51–58, August 1988.

[102] Hanan Samet.Applications of Spatial Data Structures. Addison-Wesley, Reading, Massachusetts, 1990.

[103] J. Schechter. Unix workstations stand their ground.Computer Graphics World, pages 36–46, October 1997.

[104] B.-O. Schneider. A processor for an object-oriented renderin system.Computer Graphics Forum, 7:301–310, 1988.

[105] B.-O. Schneider. Parallel rendering on pc workstations. InProc. 1998 International Conference on Parallel and Distributed
Processing Techniques and Applications, Las Vegas, July 1998.

[106] B.-O. Schneider and J. van Welzen. Efficient polygon clipping for a simd graphics pipeline.IEEE Transactions on Visual-
ization and Computer Graphics, 4(3), July 1998. To appear.

[107] P. Schroeder and J. Salem. Fast rotation of volume data on data parallel architectures. InVisualization ’91 Proceedings,
pages 50–57. IEEE CS Press, 1991.

[108] William J. Schroeder, Jonathan A. Zarge, and William E. Lorensen. Decimation of triangle meshes. In Edwin E. Catmull,
editor,Computer Graphics (SIGGRAPH ’92 Proceedings), volume 26, pages 65–70, July 1992.

[109] R. Sethi and J. Ullman. The generation of optimal code for arithmetic expressions.Journal of the ACM, 17(4), 1970.

[110] SGI. Octane Technical Report. Technical report, SGI, 1997.

[111] SGI. Onyx2 Reality and Onyx2 InfiniteReality Technical Report. Technical report, SGI, 199x.

56

SIGGRAPH 2000 course on ”Rendering and Visualization in Parallel Environments”

[112] Peter Shirley and Allan Tuchman. A polygonal approximation to direct scalar volume rendering. InComputer Graphics
(San Diego Workshop on Volume Visualization), pages 63–70, November 1990.

[113] C. Silva.Parallel Volume Rendering of Irregular Grids. Ph.D. thesis, State University of New York at Stony Brook, 1996.

[114] C. Silva, A. Kaufman, and C. Pavlakos. PVR: High-Performance Volume Rendering. InIEEE Computational Science and
Engineering, 1996.

[115] C.T. Silva and J.S.B. Mitchell. The lazy sweep ray casting algorithm for rendering irregular grids.IEEE Transations on
Visualization and Computer Graphics, 3(2), 1997.

[116] J. P. Singh, A. Gupta, and M. Levoy. Parallel visualization algorithms: Performance and architectural implications.IEEE
Computer, 27(7):45–55, 1994.

[117] L. Sobierajski and R. Avila. A hardware acceleration method for volume ray tracing. InIEEE Visualization ’95. IEEE CS
Press, 1995.

[118] Lisa Sobierajski and Arie Kaufman. Volumetric ray tracing. In Arie Kaufman and Wolfgang Krueger, editors,1994 Sympo-
sium on Volume Visualization, pages 11–18. ACM SIGGRAPH, October 1994. ISBN 0-89791-741-3.

[119] Don Speray and Steve Kennon. Volume probes: Interactive data exploration on arbitrary grids. InComputer Graphics (San
Diego Workshop on Volume Visualization), pages 5–12, November 1990.

[120] M. Steckermeier and F. Bellosa. Using Locality Information in Userlevel Scheduling. Technical Report TR-14-95-14,
Computer Science Department, University of Erlangen-Nuremberg, 1995.

[121] Craig Upson and Michael Keeler. VBUFFER: Visible volume rendering. In John Dill, editor,Computer Graphics (SIG-
GRAPH ’88 Proceedings), volume 22, pages 59–64, August 1988.

[122] Sam Uselton. Volume rendering for computational fluid dynamics: Initial results. Tech Report RNR-91-026, Nasa Ames
Research Center, 1991.

[123] R. Weinberg. Parallel processing image synthesis with anti-aliasing.Computer Graphics (Proc. Siggraph), 15(3):55–62,
August 1981.

[124] Lee Westover. Footprint evaluation for volume rendering. In Forest Baskett, editor,Computer Graphics (SIGGRAPH ’90
Proceedings), volume 24, pages 367–376, August 1990.

[125] D. Whelan. A rectangular area filling display system architecture.Computer Graphics (Proc. Siggraph), 16(3):147–153,
July 1982.

[126] S. Whitman.Multiprocessor Methods for Computer Graphics Rendering. Jones and Bartlett, Boston, London, 1992.

[127] S. Whitman. Dynamic load balancing for parallel polygon rendering.IEEE Computer Graphics & Applications, pages
41–48, July 1994.

[128] S. R. Whitman. A survey of parallel algorithms for graphics and visualization. In International Workshop on High-
Performance Computing for Computer Graphics and Visualization, Swansea, United Kingdom, 1995.

[129] Jane Wilhelms and Judy Challinger. Direct volume rendering of curvilinear volumes. InComputer Graphics (San Diego
Workshop on Volume Visualization), pages 41–47, November 1990.

[130] Jane Wilhelms and Allen Van Gelder. A coherent projection approach for direct volume rendering. In Thomas W. Sederberg,
editor,Computer Graphics (SIGGRAPH ’91 Proceedings), volume 25, pages 275–284, July 1991.

[131] Peter L. Williams and Nelson Max. A volume density optical model.1992 Workshop on Volume Visualization, pages 61–68,
1992.

[132] R. Yagel, D. Cohen, and A. Kaufman. Discrete ray tracing.IEEE Computer Graphics and Applications, pages 19–28, 1992.

[133] K. Zuiderveld.Visualization of Multimodality Medical Volume Data using Object-Oriented Methods. PhD thesis, University
of Utrecht, The Netherlands, 1995.

[134] K. Zuiderveld, A. Koning, and M. Viergever. Acceleration of ray-casting using 3D distance transforms. InVisualization in
Biomedical Computing ’92, pages 324–335. SPIE, 1992.

57

The PVR System

Cláudio T. Silva* Arie E. Kaufman* Constantine Pavlakosz

*State University of New York at Stony Brook zSandia National Laboratories

1 Introduction

Volume rendering [3] is a powerful computer graphics tech-
nique for the visualization of large quantities of 3D data. It is
specially well suited for the visualization of three dimensional
scalar and vector fields. Fundamentally, it works by modelling
the volume as cloudy-like cells composed of semi-transparent
material which emits their own light, partially transmits light
from other cells and absorbs some incoming light. (See side-
barVolume Renderingfor details).

In order to allow researchers and engineers make effective
use of volume rendering to study complex physical and ab-
stract structures, a coherent, powerful, easy to use visualiza-
tion tool is needed. Furthermore, such a tool should allow
for interactivelyvisualization, ideally with support for user-
defined “computational steering”.

There are several issues and challenges in developing such
visualization tools. (1) So much as the latest volume render-
ing acceleration techniques running on top-of-the-line work-
stations, it still takes a few seconds to a few minutes to volume
render images. This is clearly far from interactive. With the
advent of larger parallel machines, better scanners and instru-
mentation, larger and larger datasets (typically from 32MB to
512MB, but with sizes as high as 16GB) are being generated,
some of which would not even fit in memory of a workstation
class machine. (2) Even if rendering time is not a major con-
cern, big datasets may be expensive to hold in storage, and ex-
tremely slow to transfer to typical workstations over network
links.

These issues lead to the question of whether the visualiza-
tion should be performed directly on the parallel machines
which is used to generate the simulation data or sent over to
a high performance graphics workstation for post-processing.
First, if the visualization software was integrated in the simu-
lation software, there would be no need for extra storage and
visualization could be an active part of the simulation. Second,
large parallel machines can render these datasets faster than
workstations can, possibly in real-time or at least achieving
interactive frame-rates. Finally, the integration of simulation
and visualization in one tool (when possible) is highly desir-
able, because it allows users to interactively “steer” the sim-
ulation, and possibly terminate (or modify parameters in the)
simulations instead of performing painfully long simulations
on extremely expensive machines, with high cost of storage
and transmission, only to find out at post-processing that the
simulations are wrong or uninteresting.

In this paper we introduce the PVR system, currently be-
ing developed under a collaboration between Sandia National
Laboratories and the State University of New York at Stony
Brook. PVR is a component approach to building a distributed
volume visualization system. On its topmost level it provides a
flexible and high performance client/server volume rendering
architecture to the user with a unique load balancing scheme

Operating System

DVE

PVR

User

Figure 1: The relationship of Distributed Visualization Envi-
ronment (DVE) systems and PVR.

which provides a continuum of cost/performance parameters
that can be used to optimize rendering speed. The original
goals of PVR were to achieve a level of portability and per-
formance for rendering beyond that of other available systems
and to provide a platform that can be used for further develop-
ment.

But PVR is more than a rendering system, its components
were specially designed to be user-extensible, in order to allow
for user defined computational steering (that is, the user can
easily add his own computational code to PVR and just link in
our rendering library). Using PVR, it is much simpler to build
portable, high performance, complex distributed visualization
systems (Figure 1).

The rest of the paper introduces the PVR client/server archi-
tecture and its components, with emphasis on its application
to volume rendering. Details on how to achieve computational
steering with PVR are scattered across this paper.

2 The PVR System

It is well known that system complexity always limits the re-
liability of large software projects. Distributed systems ex-
acerbate this problem with the introduction of asynchronous
and non-local communication. With all of this in mind, we
use a component approach to developing PVR. PVR attempts
to provide just enough functionality in the basic system to
allow for the development of large and complex computa-
tional steering and visualization applications. It is based on
a client/server architecture, where there are coupled render-
ing/computing servers on one side, and on the other the user
acts as a client (from his workstation).

The PVR client/server architecture is implemented in two
main components: thepvrsh, which runs in the user worksta-
tion, and thePVR renderer, running in parallel machines. The
renderer is implemented as a library and it allows for easy inte-

gration of user defined code that can share the same processors
as the rendering. Communication across applications written
with PVR, are performed using the PVR protocol, and in our
implementation communication is handled by separate UNIX
processes (see Figure 2).

2.1 The pvrsh

The pvrsh is an augmented Tcl/Tk shell. It provides a sin-
gle new object to the user, thePVR session. We chose to use
Tcl/Tk [7] as the system glue. Tcl (Tool command language)
is a script language designed to be used as a generic language
in application programs. It is easily extendible with new user
commands (in C or Tcl) and coupled with the graphical envi-
ronment Tk, it is a powerful graphical user interface system.
The use of the Tcl/Tk, which are well-designed, debugged ap-
plication language and graphical environment contribute to re-
ducing the overall system complexity.

The PVR sessionis an object (such as the Tk objects).
It contains attributes and corresponding methods (used to
change those attributes). One of the most important at-
tributes is the one thatbinds a session to a particular par-
allel machine. Figure 2 contains three sessions, two on
acoma.cs.sandia.gov (a large Intel Paragon XP/S with over
1840 nodes running SUNMOS [6] installed at Sandia) and
one on parxp2.ams.sunysb.edu (a small Intel Paragon with
110 nodes running Intel’s version of OSF/1 installed at Stony
Brook). The system is designed to handle multiple sessions
using the same protocol with machines running different oper-
ating systems.

As part of its attributes a session specifies the number of
nodes it needs, and the parameters that are passed to those
nodes. Several pieces of informations areinteractivelyex-
changed between thepvrsh and thePVR renderer, such as
rendering configuration information, rendering commands, se-
quences of images, performance and debugging information.

There is a high amount of flexibility in the specification
of the rendering. Not only simple rendering elements, such
as changing transformation matrices, transfer functions, im-
age sizes, datasets can be specified, but there are commands to
specify (in a high level format) the complete parallel render-
ing pipeline (see sidebarParallel Volume Renderingfor de-
tails). With these parameters in hand, thepvrshcan be used to
specify almost arbitrary scalable rendering configurations (see
Section 2.4).

The pvrsh is implemented as a single process (used to
make ports easier) in about 5,000 lines of C code. We
have augmented the Tcl/Tk interpreter with TCP/IP connec-
tion capabilities (some versions of Tcl/Tk have this build
in). Due to the need of several concurrent sessions, all
the communication is performed asynchronous. We use
Tk CreateFileHandler() routine to arbitrate between
input from the different sessions (a UNIXselect call and
polling could be used instead, but would make the code harder
to understand and overall more complex). Sessions work as
interrupt driven commands, responding to requests one at a
time (every session can receive events from two sources at the
same time, the user keyboard and the remote machine). Lock-
ing and disabling interrupt are needed to ensure consistency
inside critical sessions.

The overall structure of the code allows for user augmen-
tation of a session’s functionality either by external or inter-
nal means.Externalaugmentation is the one that can be per-
formed without re-compilation (such as the one used by the

user interface to show the images as they are received asyn-
chronously from the remote parallel server).Internalaugmen-
tation requires changes to the source code. The source code
is structured to allow for simple addition of new functionality.
Only a single file needs to be changed to add a new session
method (if it changes theResource Database[10], two files
need to be changed). New commands are added using Tcl
conventions (see Part 3 of Ousterhout’s Tcl/Tk book [7]).

Every PVR message is sent either as a single fixed length
message, or as two messages (the first is used to specify the
size of the second). This is used to make redirection easier and
to achieve optimal performance under different configurations.
Look up tables are set up with actions to be taken on the arrival
of each message type. This setup makes additions to the PVR
protocol very simple.

2.2 The PVR renderer

ThePVR rendereris the piece of PVR that runs remotely on
the parallel machine (see Figure 2). It is composed of several
components, the most complex being the renderer itself. In
order to start up multiple the parallel processes at the remote
machine, we usepvrd, the PVR daemon. This daemon runs in
the parallel machine. It waits on a well-known port for con-
nection requests. Once a request for opening a new session is
made itforks a handling process that will be responsible for
allocating processors and communicating with the session on
the client. In the remote machine, the handling process al-
locates the computing nodes, and runs the renderer code on
them. The connection process is illustrated in Figure 3. One
pvrdcan allocate several processes, once it is killed, it kills all
its children before exiting.

The renderer is the code that actually runs on the parallel
nodes. The overall structure of the code resembles an SIMD
machine [2], where there are high-level commands and low-
level commands. There is onemasternode (similar to the mi-
crocontroller on the CM-2 machines), and severalslavenodes.
The functions of the slaves are completely dependent on the
master. The master receives commands from thepvrsh, trans-
lates them, and takes the necessary actions, including chang-
ing the state of the slaves and sending them a detailed set of
instructions.

For flexibility and performance, the method of sending in-
structions to the nodes are throughaction tables(like SIMD
microcode). In order to ask the node to perform some action,
the master broadcast the address of the function to be executed.
Upon receiving that instruction, the slaves execute that partic-
ular function. With this method, it is very simple to add new
functionality, because any new added functionality can be per-
formed locally, without the need to change global files. Also,
every function can be optimized independently, with its own
communication protocol. One shortcoming of this communi-
cation method (as in SIMD machines) is that one has to be
careful with non-uniform execution, specially because the In-
tel NX communication library (both OSF and SUNMOS have
support for NX) has limited functionality for handling nodes
as groups (e.g., in setting up barriers with NX it is impossible
to select a group from the totality of the allocated nodes).

The master intrinsically divides the nodes intoclusters.
Each cluster has specialized computational task, and multi-
ple clusters can cooperate in groups to achieve a large task.
All that is necessary for cluster configuration is that the basic
functions be specified in user-defined libraries that are linked
in a single binary. During runtime, the user can use the master

Renderer

Renderer

Renderer

Tcl/Tk
interpreter

TCP/IP
Connection

TCP/IP
Connection

TCP/IP
ConnectionSession handler

Session handler

Session handler

Display Window

Display Window

Display Window

Display Window

Display Window

File I/O

File I/O

pvrsh

parxp2.ams.sunysb.edu

acoma.cs.sandia.gov

Figure 2: PVR Architecture. The overall structure of the system is shown with emphasis on thepvrsh. The Tcl/Tk core acts as
glue for all the client components. Everything with the exception of therenderersrun on the user’s workstation. Therenderersrun
remotely on the parallel machines.

Handling
Process

Connection
Request

Fork

Processor
Allocation

Renderer

TCP/IP
Connection

:session

pvrd

Figure 3: In order to allocate nodes, thepvrshsends a com-
mand to thepvrd, which in turns creates a special communica-
tion handling process and allocates a partition on the parallel
machine.

to reconfigure his clusters accordingly to his immediate goal.
The pvrshcan be used tointeractivelysend such commands.
As an example of the use of such scheme, see Figure 4, where
the rendering configuration for PVR’s high performance vol-
ume renderer is specified.

In order to achieve user-defined computational steering, one
can use this clustering paradigm. It will usually be necessary
to add one’s functionality to the action tables (e.g., linking the
computational code with PVR dispatching code), and also add
extra options to thepvrsh(usually through theset command)
for modifying the relevant parameters interactively.

PVR’s volume rendering code was the inspiration for this
overall code organization and is a very good application to
demonstrates its features. Because in this paper our focus is
on describing PVR, and not on the actual volume rendering
code, we only sketch the implementation to give insight on
how to add your own code (for possible computational steer-
ing) to PVR and to give you enough information for effective
use of PVR’s rendering facilities.

2.3 Volume Rendering Pipeline

The PVR rendering pipeline is composed of three types of
nodes (besides the master, of course). There are therendering
nodes, compositing nodes, and collector nodes(usually just
one), (see Figure 4). This specialization is necessary for op-
timal rendering performance and flexibility. All the clusters
work in a simple dataflow mode, where data moves from top
to bottom in pipeline fashion. Every cluster has its own fan-in
and fan-out number and type of messages. The master con-
figures (and re-configures) the overall dataflow using a set of
user-defined and automatic load balancing parameters.

At the top level are the rendering clusters. The nodes in a
rendering clusters are responsible for the resampling and shad-
ing a given volume dataset. In general the input is a view ma-
trix, and the output is a set of sub-images, each of which is
a related to a node in the compositing binary tree. The mas-
ter can use multiple rendering clusters working on the same
image, but disjoint scanlines in order to speed up rendering.
Once the subimages are computed, they are passed down in
the pipeline to the compositing clusters.

The compositing clusters are organized in a binary tree
structure, matching that of the corresponding compositing
tree. The number of compositing nodes can actually be dif-
ferent, as we can usevirtualization to fake more processors
than allocated. Images are pipelined down the tree, with ev-
ery iteration combining the results of compositing until finally
all the pixels are a complete depth-ordered sequence. Those
pixels are converted to RGB format and sent to the collector
node(s) (at this time, we just use a single collector node).

The collector node receives RGB images from the com-
positing nodes, compresses them using a simple run-length
encoding scheme (very fast compression is necessary). Finally
the images are either sent over to thepvrshfor user viewing (or
saving), or locally cached on the disk (it can also be specified
that images are trashed for performance analysis purposes).

The previous discussion is over simplistic. There are sev-
eral performance issues, related to CPU speed, synchroniza-
tion and memory usage that have not been discussed. For more
complete details, we refer the interest reader to Cl´audio Silva’s
Ph.D. dissertation [10].

Rendering
Cluster

Rendering
Cluster

Rendering
Cluster

Cluster
Compositing

Cluster
Compositing

Collector
Image

Sequence

Single
Node

Nodes
Multiple

Low Bandwidth

High Bandwidth

High Level
Commands

Low Level Commands

Rendering
Cluster

Rendering Pipeline

Master

Figure 4: The host receives high level commands that are translated into virtualmicrocodeby the action tables. For rendering, the
high level commands are for the generation of animations by rotations and translations, that are translated into simple transformation
matrices commands. The rendering clusters perform rendering in parallel. The collector receives and groups images back together
and sends an ordered image sequence to the client application.

2.4 Rendering with PVR

Figure 5 shows a simple PVR program. Several important fea-
tures of PVR are demonstrated. In particular, the seamless in-
tegration with Tcl/Tk, the flexible load balancing scheme, and
the interactive specification of parameters. Theset command
can have several options (in the Figure 5 they are usually spec-
ified in multiple lines, but all can be specified in a single line).
For instance,-imagesz specifies the size of the images that
are output by the system.

The -cluster and -group options are unique to PVR
and its flexible load balancing scheme. With both of these op-
tions, the relative sizes of the rendering and compositing clus-
ters can be specified together with the image calculation allo-
cation. Several scalability strategies can be used, for instance,
a rendering cluster needs to be large enough to hold the entire
dataset and at least a copy of the image to be calculated. By in-
creasing the size of the cluster, the amount of memory per node
decreases. Bygroupingclusters (using-group), the number
of scanlines a given cluster is responsible for decreases, lower-
ing both the memory and the computational cost, thus speed-
ing up image calculation. The same commands can be used to
configure compositing clusters. The scalability parameters for
compositing clusters is very different than for rendering clus-
ters, because of the different nature of the task. Compositing
nodes need memory to hold two copies of the images, what
can be quite large (our current parallel machines only have be-
tween 16MB to 32MB RAM, this might not be a problem in
the near future), and also compositing has very high synchro-
nization cost that grows as the number of nodes grow. Cur-
rently, the only need for multiple compositing clusters is due
to the need of more memory for large images (such as 1024-
by-1024).

2.5 DVEs

DVEs can be easily developed by making use of the
client/server metaphor. DVE developed using Tcl/Tk are very

portable, as Tcl/Tk has ports for almost all the operating sys-
tems available, and TCP/IP (our communication protocol) is
virtually universal.

Figure 6 shows a simple prototype GUI developed at San-
dia. The complete interface is written in Tcl/Tk. The user is
able to specify all the necessary rendering parameters in the
right window (including image size, transfer function, etc.)
and the load balancing parameters in the left window. This
simple interface only uses a single session at this time, but
more functionality is being added to the system.

Using the prototype GUI, users are able to add their own
functionality to the system as needed. This flexibility not only
makes the system more usable, because redundantbells and
whistlescan be discarded, but also new functionality can be
easily added. The use of a portable and well-documented win-
dows interface (e.g., Tk) is imperative. Not only users avoid
having to learn yet another programming language and graph-
ical toolkit, but the use of Tk saved us a lot of implementation
and documentation cost (Tcl/Tk is widely used and highly doc-
umented). Another important feature of Tcl/Tk for the devel-
opment of prototypes is that it is freely available, enabling us
to do the same for PVR.

3 Discussion

3.1 Related Work

The Shastra project at Purdue has developed tools for dis-
tributed and collaborative visualization [1]. Their system im-
plements parallel volume visualization with a mix of image
space and object space load balancing, but few details of the
scheme are given. They report using up to 4 processors for
computation, what makes it hard to evaluate the systems us-
ability in a massively parallel environment. Rowlan et al. [9]
describes a distributed volume rendering system implemented
on the IBM SP-1. Their system has several of the same charac-
teristics as ours. They also separate rendering and compositing
nodes to increase performance and provide a Front-End GUI.

toplevel .rgb ; Tcl/Tk stuff – creates necessary windows
photo .rgb.p
pack .rgb.p
toplevel .c
canvas .c.c
pack .c.c
source stat.tcl ; External command specified in stat.tcl

; it will place images that get to the session handler in the
; specified window, and draw a small performance graph

pvr session :brain ; creates a session called “brain”
:brain image window .rgb.p ; specifies the window that receives

; the images
:brain image callback imgCallback ; specifies the external command
:brain image dir ./ ; where to place images
:brain open acoma.cs.sandia.gov ; opens a connection with acoma

; using the default number of nodes (100)
; the defaults are in .pvrsh
; if this command succeeds, we are connected

:brain set -dataset brain.slc ; specifies the dataset
:brain set -cluster r,16 -group 0,0,1,1 ; 4 rendering clusters of 16 nodes

; divided into 2 groups, nodes in a group
; share the same image calculation

:brain set -cluster c -group 0,0 ; 2 compositing clusters of 15 nodes
; each, this allows for the calculation of very
; large images, as each cluster will handle half
; of pixels coming from the rendering nodes

:brain set -imagesz 512,512 ; specifies the image size
:brain render rotation 0,1,0 15,59:60 ; specifies the rendering of

; 45 images, starting from one quarter rotation
; along the y axis

:brain set -imagesz 256,256 ; specifies the image size
; for this image size, one compositing cluster is enough

:brain set -cluster c -group 0
; re-use the nodes for rendering

:brain set cluster r,16 -group 0,1,2,3,4 ; 5 rendering clusters of 16 nodes
:brain render rotation 1,1,1 0,359:360

Figure 5:A set of PVR rendering commands. The commands can be put in a file and executed in batch, or can be typed interactively
on the keyboard (or mixed). Tcl/Tk code (such as “stat.tcl”) can be written to take care of portions of the actions.

Another cousin of our system is DISCOVER [4], developed
at National Cheng-Kung University (Taiwan). Their system
was customly developed for medical imaging applications and
provides mechanisms for the use of remote processor pools.

3.2 Visualization Servers

One use of our parallel renderer is as a visualization server for
parallel processes [8]. The basic idea is to pre-allocate a set of
nodes that can be time-shared by multiple users for visualizing
their data. Because of our novel use of pipelining, this can be
achieved fairly efficient and with minimal overheard.

Actually, our system architecture is also suitable for time-
varying data. When rendering time-varying data, we add a
permanentcaching clustersto the pipeline in Figure 4, that
is responsible for distributing the volume data to the render-
ing nodes efficiently. The caching cluster is used to hide I/O
latency from disk (or other sources). This way the user can
visualize his data for as long as a new version comes along.
Handling data that changes too rapidly (e.g., faster than we
can move it and render) is not possible as it would require
large amounts of buffering.

3.3 Performance and Results

The current version of PVR is about 25,000 lines of C and
Tcl/Tk code. It has been used at Brookhaven National Labs,
Sandia National Labs and Stony Brook for the visualization of
large datasets. We have demonstrated the capability of render-
ing a 500,000,000 bytes dataset (the CT visible human data
from the National Institute of Health) in approximately 5 sec-
onds/frame. Actually, PVR was demoed in the Sandia booth
during Supercomputing ’95. Our plans are to use render the
full RGB visible human (14,000,000,000 bytes) by the end of
the year. (Parallel I/O will be a must, currently the 500MB
visible human takes 15 minutes of disk I/O).

3.4 Further Development

The idea of developing PVR started out of frustration trying
to use network of workstations and the Paragon as rendering
engines for VolVis. It was always clear that a pure distributed
approach to building rendering environments would be much
more powerful than special rendering tools with parallel capa-
bilities. Even though we have completed ausableand efficient
system, there is still a long wish list, in both the research and
development front.

We are currently working on making the system stable
enough for large scale availability. With that in mind we are
currently working on creating a complete DVE (using VolVis
as a starting point) on top of PVR. One of the challenges is
how to integrateresource allocationandadmission controlin
our DVE.

Some functionality is missing from PVR and needs to be
incorporated. The most important is probably the support for
multiple data sets in a session. This would make the load bal-
ancing scheme much more complicated, and simple heuristics
might not generate well balanced decomposition schemes. If
the volumes are allowed to overlap (as in VolVis), the problem
is even harder, and the solution seem to require having spe-
cial compositenodes that perform the sorting at the end of the
pipeline. It might be necessary to have a reconfiguration phase
each time a new volume is introduced in the picture. It is not
clear yet how this can be done efficiently.

A simpler change is to add support in the PVR renderer for
non-homogeneous processors. One just needs to change the
load balancing scheme slightly by normalizing the number of
PARC sub-cubes per processor with their relative performance
parameters. Finally, we hope to look in the future for ways
to perform real-time manipulation rendering, where the user
can just move a mouse and see the picture changing in real-
time with minimal lag. For this, we suspect the work done in
eliminating virtual reality lag may help.

4 Conclusions

In this article we have introduced the PVR system. Here are
some of the key features in our system:

� Transparency- PVR hides most of the hardware depen-
dencies from the DVEs and the user.

� Performance- PVR provides a high speed pipelined ray
caster with a unique load balancing scheme and mech-
anisms to fine tune performance for any given machine
configuration.

� Scalability- All the algorithms used in the system were
carefully chosen to be gracefully scalable. Not only with
respect to the machine size, but special care was taken to
allow for grown in dataset size and image size.

� Extensibility- The PVR architecture can be easily ex-
tended, making it easy for the DVE to add new func-
tionality. Also, it is fairly easy for the user to add new
functionality to the PVR shell and its corresponding ker-
nel, allowing for user defined “computational steering”
coupled with visualization.

PVR introduces a new level of interactivity to high perfor-
mance visualization. Larger DVEs can be built on top of PVR,
and yet be portable across several architectures. These DVEs
that use PVR are given the opportunity to make effective use
of available processing power (up-to to a few hundred proces-
sors), giving a range of cost/performance to end users. This
is particularly important in the scientific research community,
since most often the question is nothow fast, but how much.
PVR provides a strong foundation for building cost effective
DVEs.

As far as the user interface is concerned, PVR introduces
a much simpler way to create it. No longer one has to spend
time coding in X/MOTIF (or Windows) to create the desired
user interface. The Tcl/Tk combination is much simpler, gives
more flexibility, and is closely as powerful as the other alter-
natives. Tcl/Tk is becoming as popular as UNIX shell pro-
gramming. Different sites should be able to easily create and
modify their own systems.

Acknowledgments

We would like to thank Maurice Fan Lok, who as a M.S. stu-
dent at Stony Brook made fundamental contributions to PVR
by co-writing the first version during 1994/95. Brian Wylie
deserves special thanks for continual support of the project
and for the development of the user interface. We thank Tzi-
cker Chiueh, Pat Crossno, Steve Dawson, Juliana Freire, Ron
Peierls, and Amitabh Varshney for useful discussions about
the PVR system and for help with this paper. The port of PVR

to SUNMOS was only possible due to the help of Kevin Mc-
Curley, Rolf Riesen, Lance Shuler from Sandia and Edward J.
Barragy from Intel. The MRI data set is courtesy of Siemens,
Princeton, NJ. C. Silva is partially supported by CNPq-Brazil
under a PhD fellowship and by Sandia National Labs. A.
Kaufman is partially supported by the National Science Foun-
dation under grants CCR-9205047 and DCA 9303181 and by
the Department of Energy under the PICS grant.

Electronic Information

Current information on PVR (including images, animations,
related publications, etc.) is kept in http://www.ams.su-
nysb.edu/̃ csilva and http://www.cs.sandia.gov/VIS.

Appendix: Parallel Volume Rendering

There are basically three different orthogonal types of paral-
lelism that can be exploited with volume rendering. In the
PVR system we exploit all of them:

Image Space Parallelism. In image space parallelism
parts of a single image are divided into multiple processors
for concurrent image generation. For volume rendering (and
in general for computer graphics) this is the simplest form of
parallelism, as no subdivision of the volume itself need to be
performed and the volume never needs to be updated. This is
usually the type of parallelism implemented on shared mem-
ory machines [12]. The main shortcoming of this method (for
distributed memory machines) is that large datasets can not be
rendered using this type of parallelism alone.

Object Space Parallelism. In object space parallelism
parts of the volume are divided into multiple processors, each
computes a sub-image, that is later regrouped. The main short-
comings are the higher need for communication and synchro-
nization among the processors (parallel machines still have
slow communications with respect to processor speed). Ma
et al. [5] describes an efficient algorithm for re-grouping the
images back together to form a single correct image. In stati-
cally partitioning the volume dataset, one has to be careful to
give every processor the same amount of work (see [11].

Time Space Parallelism. In time space parallelism, mul-
tiple images are computed at the same time. This exploits the
fact that the rendering process can be easily divided into mul-
tiple disjoint phases.

References

[1] V. Anupam, C. Bajaj, D. Schikoer, and M. Schikore. Dis-
tributed and collaborative visualization.IEEE Computer,
27(7):37–43, 1994.

[2] D. Hillis. The Connection Machine. MIT Press, 1985.

[3] A. E. Kaufman. Volume Visualization. IEEE Computer
Society Press, ISBN 908186-9020-8, Los Alamitos, CA,
1990.

[4] P.-W. Liu, L.-S. Chen, S.-C. Chen, J.-P. Chen, F.-Y. Lin,
and S.-S. Hwang. Distributed computing: New power for
scientific visualization. IEEE Computer Graphics and
Applications, 16(3):42–51, 1996.

[5] K. Ma, J. Painter, C. Hansen, and M. Krogh. Par-
allel volume rendering using binary-swap compositing.
IEEE Computer Graphics and Applications, 14(4):59–
68, 1994.

[6] A. Maccabe, K. McCurley, R. Riesen, and S. Wheat.
Sunmos for the Intel Paragon - A Brief User’s Guide.
In Proceedings of the Intel Supercomputer Users’ Group
1993 Annual North America Users’ Conference, October
1993.

[7] J. Ousterhout.Tcl and the Tk Toolkit. Addison-Wesley,
1993.

[8] C. Pavlakos, L. Schoof, and J. Mareda. A visualization
model for supercomputing environments.IEEE Parallel
& Distributed Technology, 1(4):16–22, 1996.

[9] J. Rowlan, E. Lent, N. Gokhale, and S. Bradshaw. A dis-
tributed, parallel, interactive volume rendering package.
In IEEE Visualization ’94, pages 21–30, 1994.

[10] C. Silva. Parallel Volume Rendering of Irregular Grids.
Ph.D. thesis, State University of New York at Stony
Brook, 1996.

[11] C. Silva and A. Kaufman. Parallel performance measures
for volume ray casting. InIEEE Visualization ’94, pages
196–203, 1994.

[12] J. P. Singh, A. Gupta, and M. Levoy. Parallel visualiza-
tion algorithms: Performance and architectural implica-
tions. IEEE Computer, 27(7):45–55, 1994.

Figure 6: A snapshot of Brian Wylie’s user interface developed at Sandia National Labs. There are three windows. On the right is
the main interface window, where the user can specify general rotations. On the left, the cluster configuration window. And on the
bottom an image of a cell calculated with PVR.

Page 1

Course 13

Rendering and Visualization in
 Parallel Environments
Rendering and Visualization in
 Parallel Environments

Dirk Bartz -Dirk Bartz -
University of TUniversity of Tübingenübingen , WSI/GRIS, WSI/GRIS

BengtBengt --OlafOlaf Schneider - Schneider -
IBM T.J. Watson Research CenterIBM T.J. Watson Research Center

Claudio Silva -Claudio Silva -
AT&T Shannon LabsAT&T Shannon Labs

Course 13

Wilhelm SchickardWilhelm Schickard, 1592-1635, 1592-1635
ProfProf. of . of Orientalic Orientalic Languages, Languages,
 Astronomy, Mathematics, andAstronomy, Mathematics, and

GeodesyGeodesy
at University of at University of TübingenTübingen

1623 invention of first1623 invention of first
 calculation machine calculation machine

(Blaise Pascal’s Pascaline 1642)

University of Tübingen (1)University of Tübingen (1)

Page 2

Course 13

University of Tübingen (2)University of Tübingen (2)

Course 13

University of Tübingen (3)University of Tübingen (3)

Page 3

Course 13

University of Tübingen (4)University of Tübingen (4)

Dirk Bartz

Course 13

IBM Watson (1)IBM Watson (1)

Page 4

Course 13

IBM Watson (2)IBM Watson (2)

New York City

Course 13

Bengt-Olaf Schneider

IBM Watson (3)IBM Watson (3)

Page 5

Course 13

AT & T Shannon Labs (1)AT & T Shannon Labs (1)

Course 13

New York City

AT & T Shannon Labs (2)AT & T Shannon Labs (2)

Page 6

Course 13

Claudio Silva

AT & T Shannon Labs (3)AT & T Shannon Labs (3)

Course 13

Schedule (1)Schedule (1)

• Introduction (Bartz) (1:30 - 1:35 pm)

•• Part One: FoundationsPart One: Foundations
• Architectures of Personal Workstations

(Schneider) (1:35 - 2:00 pm)

• Technical Workstations (Bartz) (2:00 - 2:20 pm)

• Parallel Programming (Bartz) (2:20 - 3:30 pm)
 Break: 3:00 - 3:15

Page 7

Course 13

Schedule (2)Schedule (2)

•• Part Two: RenderingPart Two: Rendering
• Parallel Polygonal Rendering (Schneider)

(3:30 - 4:10 pm)

• Parallel Volume Rendering (Silva)
(4:00 - 4:55 pm)

Question and Answers (All) (4:55 - 5:00 pm)

Course 13

Course Note UpdateCourse Note Update

•• New and updated material can be found atNew and updated material can be found at

http://www.http://www.grisgris..uniuni--tuebingentuebingen.de/.de/
~~bartzbartz/sig2000course/sig2000course

Personal WorkstationsPersonal Workstations

Bengt-Olaf SchneiderBengt-Olaf Schneider
IBM T.J. Watson Research CenterIBM T.J. Watson Research Center

OutlineOutline

PWS ArchitecturePWS Architecture

PC GraphicsPC Graphics

PWS Market TrendsPWS Market Trends

Personal Workstation ...

Personal Computer

So what's the difference ?

Quite frankly: Not all that much !

PWS ArchitecturePWS Architecture

Personal Workstation (PWS)Personal Workstation (PWS) Personal Computer (PC)Personal Computer (PC)
ApplicationsApplications Technical Computing,Technical Computing,

Digital Content Creation,Digital Content Creation,
MCAD, ECAD, SW Eng.,MCAD, ECAD, SW Eng.,
Application certificationApplication certification

Office applications Office applications
(word proc., spreadsheets,(word proc., spreadsheets,
presentation graphics)presentation graphics)
Data access (3270 emul.)Data access (3270 emul.)

Design focusDesign focus High performanceHigh performance Low costLow cost
ArchitectureArchitecture SMP-enabledSMP-enabled

Large memory (GBytes)Large memory (GBytes)
Large and fast disksLarge and fast disks
Fast 2D/3D graphicsFast 2D/3D graphics

UniprocessorUniprocessor
Limited expandabilityLimited expandability

Operating environmentOperating environment Windows NT, Windows NT,
Unix (Linux, Solaris)Unix (Linux, Solaris)
NT-Unix interoperabilityNT-Unix interoperability

Windows 95/98Windows 95/98

Personal Workstations a.k.a. PWSPersonal Workstations a.k.a. PWS

Windows NTWindows NT LinuxLinux

Strong client support, GUIStrong client support, GUI Good server environment, X-GUIGood server environment, X-GUI

Strong application supportStrong application support Few apps, good for programmersFew apps, good for programmers

SupportedSupported (Good) voluntary support(Good) voluntary support

Limited scalabilityLimited scalability Demonstrated good scalabilityDemonstrated good scalability

Fairly stableFairly stable Robust serverRobust server

No built-in rsh, rlogin, rexec ...No built-in rsh, rlogin, rexec ... Typical Unix connectivityTypical Unix connectivity

Lower TCOLower TCO TCO (Unix !)TCO (Unix !)

A word on Operating Systems ...A word on Operating Systems ...

CPU 0CPU 0

CPU 1CPU 1 L2L2

L2L2

ChipsetChipset

GraphicsGraphics

PeripheralsPeripherals

MemoryMemoryCPU BusCPU Bus

AGPAGP

PCIPCI

PWS ArchitecturePWS Architecture

PWS ClustersPWS Clusters

PWS clustered using network technologyPWS clustered using network technology
High-speed Ethernet
Proprietary Networks
PCI-Bridges
Switches

Clusters vs SMPClusters vs SMP
Less bandwidth
More scalable

PWS Cluster - ExamplePWS Cluster - Example

Digital Domain Digital Domain
Rendering FarmRendering Farm

160 DEC Alpa 433 MHz
100 Mbit Ethernet

CPU 0CPU 0

CPU 1CPU 1 L2L2

L2L2

ChipsetChipset

GraphicsGraphics

PeripheralsPeripherals

MemoryMemoryCPU BusCPU Bus

AGPAGP

PCIPCI

Pentium II or III (or AMD K7)Pentium II or III (or AMD K7)
800+ MHz800+ MHz
Configurable with 2 CPUsConfigurable with 2 CPUs
512 kB of L2 cache512 kB of L2 cache
100 MHz CPU bus100 MHz CPU bus

PWS Architecture - CPUPWS Architecture - CPU

CPU 0CPU 0

CPU 1CPU 1 L2L2

L2L2

ChipsetChipset

GraphicsGraphics

PeripheralsPeripherals

MemoryMemoryCPU BusCPU Bus

AGPAGP

PCIPCI

PWS Architecture - ChipsetPWS Architecture - Chipset

Chipset interfaces the CPU to the rest of the Chipset interfaces the CPU to the rest of the
systemsystem

Memory interfaceMemory interface
Today: SDRAM
Future: RDRAM

Bus interfacesBus interfaces
PCI
AGP

CPU 0CPU 0

CPU 1CPU 1 L2L2

L2L2

ChipsetChipset

GraphicsGraphics

PeripheralsPeripherals

MemoryMemoryCPU BusCPU Bus

AGPAGP

PCIPCI

Token Ring 16 Mb/s 14-15 Mb/s
Ethernet 10 Mb/s 7-8 Mb/s
Ethernet 100 Mb/s 90 Mb/s
Ethernet 1 Gb/s 120 Mb/s

PWS Architecture - PeripheralsPWS Architecture - Peripherals

DisksDisks
SCSI for performance and scalability
SSA and RAID for even better performance

NetworkNetwork
Typically 100 Mbit/s Ethernet
NT problems with Gigabit Ethernet
Alternatives, e.g. Myrinet

System:
Pentium II Xeon @ 450 MHz, 440GX,
512 KB L2, 256 MB SDRAM/100,
9 GB Ultra-2 SCSI, Windows NT 4.0 w/ SP4

CPU 0CPU 0

CPU 1CPU 1 L2L2

L2L2

ChipsetChipset

GraphicsGraphics

PeripheralsPeripherals

MemoryMemoryCPU BusCPU Bus

AGPAGP

PCIPCI

PWS Architecture - GraphicsPWS Architecture - Graphics

PCI or AGP attachedPCI or AGP attached

Rasterization and setup in hardwareRasterization and setup in hardware
High-end: geometry and lighting in hardwareHigh-end: geometry and lighting in hardware

Large graphics memoryLarge graphics memory
High resolution
Deep frame buffers
Large textures

Integer performance 570 MIPS
Floating-point performance 220 MFLOPS
Memory bandwidth 140 MB/s
Disk bandwidth 13 MB/s

Single/Dual Pentium II at 400 MHzSingle/Dual Pentium II at 400 MHz
Intel 440BX chipsetIntel 440BX chipset
32 MB ... 1+ GB SDRAM @ 100 MHz32 MB ... 1+ GB SDRAM @ 100 MHz
9+ GB SCSI-2 10,000 rpm hard drive9+ GB SCSI-2 10,000 rpm hard drive
100 Mbit/sec Ethernet100 Mbit/sec Ethernet
High-performance 3D graphics cardHigh-performance 3D graphics card

A "Typical" Personal WorkstationA "Typical" Personal Workstation

System:
Pentium II Xeon @ 450 MHz, 440GX,
512 KB L2, 256 MB SDRAM/100,
9 GB Ultra-2 SCSI, Windows NT 4.0 w/ SP4

RAMDACRAMDAC
Frame BufferFrame Buffer

&&
Texture MemoryTexture Memory

GeometryGeometry
&&

SetupSetup
PCI/AGPPCI/AGP

Rasterizer(s)Rasterizer(s)
VGAVGA

3D Graphics Accelerator3D Graphics Accelerator

2D PC Graphics2D PC Graphics

Supports 2D APIsSupports 2D APIs
GDI
DirectDraw

Display ManagementDisplay Management
Display surfaces
Graphics contexts
Color palette(s)
Screen refresh

Basic functionsBasic functions
Primitives: polygons, lines,
circles, text, ...
Color fill
BitBlts & Raster Ops
Cursor functions

ApplicationApplication

GeometryGeometry
& Lighting& Lighting

SetupSetup

RasterizationRasterization

FragementFragement
ProcessingProcessing

Scr. RefreshScr. Refresh

3D Polygon Pipeline3D Polygon Pipeline

ApplicationApplication
executes on the host processor
generates graphics primitives
controls overall display parameters
responds to user input

ApplicationApplication

GeometryGeometry
& Lighting& Lighting

SetupSetup

RasterizationRasterization

FragementFragement
ProcessingProcessing

Scr. RefreshScr. Refresh

3D Polygon Pipeline3D Polygon Pipeline

Geometry and Lighting for OpenGLGeometry and Lighting for OpenGL
Lines, polys, triangles, t-strips, ...
Model and world transformations
Normal normalization
Lighting and fogging
Clipping and culling
Perspective and viewport mapping

Geometry accelerationGeometry acceleration
200-500 FP operations per triangles
Parallel DSPs or general-purpose CPUs

0 500 1000 1500 2000
0

20

40

60

80

100

C
P

U
+F

LO
P

S
 U

til
iz

at
io

n,
 %

0 500 1000 1500 2000
0

20

40

60

80

100

C
P

U
+F

LO
P

S
 U

til
iz

at
io

n,
 %

CPU
FLOPS

CPU
FLOPS

Effect of Geometry AcceleratorEffect of Geometry Accelerator

200 300 400 500 600 700
0

20

40

60

80

100

C
P

U
+F

LO
P

S
 U

til
iz

at
io

n,
 %

200 300 400 500 600 700
0

20

40

60

80

100

C
P

U
+F

LO
P

S
 U

til
iz

at
io

n,
 %

CPU
FLOPS

CPU
FLOPS

Bench97: Up to 40% smaller CPU/FLOPS load with geometry
acclerator for small parts of the benchmark.

Effect of Geometry AcceleratorEffect of Geometry Accelerator

ApplicationApplication

GeometryGeometry
& Lighting& Lighting

SetupSetup

RasterizationRasterization

FragementFragement
ProcessingProcessing

Scr. RefreshScr. Refresh

3D Polygon Pipeline3D Polygon Pipeline

Setup CalculationsSetup Calculations
Floating-point to fixed-point conversion
Gradient calculations
Subpixel correction

Setup ProcessorSetup Processor
100-200 (mostly) fixed-point operations per
triangle
Often implemented in special-purpose
ASIC or together with the rasterizer

ApplicationApplication

GeometryGeometry
& Lighting& Lighting

SetupSetup

RasterizationRasterization

FragementFragement
ProcessingProcessing

Scr. RefreshScr. Refresh

3D Polygon Pipeline3D Polygon Pipeline

RasterizationRasterization
Scan-conversion of basic primitives, e.g.
points, lines triangles
Attribute interpolation, i.e. z-values, color
(Gouraud shading) and texture coordinates

RasterizerRasterizer
Built as special-purpose ASIC combined
with fragment processing

ApplicationApplication

GeometryGeometry
& Lighting& Lighting

SetupSetup

RasterizationRasterization

FragementFragement
ProcessingProcessing

Scr. RefreshScr. Refresh

3D Polygon Pipeline3D Polygon Pipeline

Fragment ProcessingFragment Processing
Read / modify / write to graphics memory
Z-buffering, a-blending, stencil, fogging
Texture-mapping: Best place to "optimize"

Fragment ProcessorFragment Processor
High demands on memory bandwidth
6-15 bytes/pixel, 25-50 pixels/triangle
1M triangles/sec: 150-750 MB/sec
Optimize access to graphics/texture buffers
Pipeline to compensate for memory latency
Use caches to reuse texture (and z) values
Approximate computation of mipmap level
Compression of textures

ApplicationApplication

GeometryGeometry
& Lighting& Lighting

SetupSetup

RasterizationRasterization

FragementFragement
ProcessingProcessing

Scr. RefreshScr. Refresh

3D Polygon Pipeline3D Polygon Pipeline

Screen RefreshScreen Refresh
Scan final image from frame buffer and
display on monitor
For color-mapped displays (8 bpp) look up
final pixel color in Palette DAC (RAMDAC)
Rapid frame buffer access to scan out pixels
Refresh rate and screen resolution are
determined by ergonomics and application
requirements
BWrefresh = W x H x bpp x fr
1280 x 1024 x 24 bpp @ 60 Hz: BWrefresh = 225 MB/s
1600 x 1200 x 16 bpp @ 85 Hz: BWrefresh = 311 MB/s

ApplicationApplication

GeometryGeometry
& Lighting& Lighting

SetupSetup

RasterizationRasterization

FragementFragement
ProcessingProcessing

Scr. RefreshScr. Refresh

3D Polygon Pipeline3D Polygon Pipeline
Graphics Memory: Extreme RequirementsGraphics Memory: Extreme Requirements

Bandwidth
Image Generation: 150-750 MB/s
Screen Refresh: 200-300 MB/s
VRAM, SDRAM / SGRAM 64 or 128 bits wide

Capacity
Pixel Memory: 16, 24, 32 ... MBytes
Resolution: 1024x768, 1280x1024, 1600x1200
Frame buffer: 8, 15, 16, 24 bpp, possibly DB
Depth buffer: 16, 24, 32 bpp
Alpha (8), Stencil (8), Over/Underlay (4,8)
Texture often in separate memory of similar size

Texture size up to 4096 x 4096Texture size up to 4096 x 4096
1, 4, 8, 15, 16, 24, 32 bits per texel1, 4, 8, 15, 16, 24, 32 bits per texel

Bus Standards: PCIBus Standards: PCI

Most common bus interfaceMost common bus interface
33 MHz, 32 bit of shared address and data
Peak bandwidth 133 MB/s
Typical sustained bandwidth 50-70 MB/s
Specification defines 64 bit bus and 66 MHz clock

Bus protocol does not support split transactions
Only one transaction at a time
Bus blocks for high latency transactions

All devices on the PCI bus compete for access to the bus,
e.g. graphics, disk, network

Requires arbitration
Bus contention

Bus Standards: AGPBus Standards: AGP

AGP = Accelerated Graphics PortAGP = Accelerated Graphics Port
Optimized for 3D graphics
Extension of 66 MHz PCI bus protocol

De-multiplexed address and data linesDe-multiplexed address and data lines
Single-drop bus, i.e. point-to-point connection
No arbitration, more efficient transfers
Faster transfers with double-edged clocking (133 MHz)
Higher throughput
Up to 500 MB/s (up to 1 GB/s with AGP-4)

Split transaction protocolSplit transaction protocol
Pipelined accesses to hide (memory) latency

Bus Standards: AGP (cont'd)Bus Standards: AGP (cont'd)

AGP provides 2 modes of operation:AGP provides 2 modes of operation:
DMA ModeDMA Mode uses system memory as secondary uses system memory as secondary
storagestorage

Data, e.g. textures, are brought into graphics memory under
adapter control (long transfers in burst mode)
Data are processed once in graphics memory

Execute ModeExecute Mode provides indentical view of provides indentical view of
system memory and graphics memorysystem memory and graphics memory

Data can be accessed and processed directly from system
memory (short, random accesses)
Requires a linear view of system memory by the adapter
GART (Graphics Address Remapping Table) in the chipset
Acts similar to page tables in virtual memory systems

PWS Market TrendsPWS Market Trends

Unix vs NT for Graphics Unix vs NT for Graphics
WorkstationsWorkstations

0 10 20 30 40 50

Total System Price, K$

10

100
(F

ra
m

es
 p

er
 S

ec
on

d
- H

ig
he

r
is

 B
et

te
r)

V
ie

w
p

er
f

C
D

R
S

-0
3

B
en

ch
m

ar
k

1997 - Unix Systems
1997 - NT Systems

1996 - Unix Systems
1996 - NT Systems

1998 - Unix
1998 Unix

1998 NT

NT Systems -
1996

Unix Systems -
1996

Unix Systems - 1997

NT Systems
- 1997

NT Systems
- 1998

Unix Systems - 1998

0 10 20 30 40 50

Total System Price, K$

1

10

100

(F
ra

m
es

 p
er

 S
ec

o
n

d
 -

 H
ig

h
er

 is
 B

et
te

r)

V
ie

w
p

er
f C

D
R

S
-0

3
B

en
ch

m
ar

k

1996 - All Unix and NT Systems 1997 - All Unix and NT Systems

"Best" Performance / Price
NT System

"Best" Performing
NT System

Performance vs. Price/PerformancePerformance vs. Price/Performance

PWS Market Trends - SummaryPWS Market Trends - Summary

PWS are offering better price-performance than PWS are offering better price-performance than
Unix workstationsUnix workstations

Economies of scale
Larger market for PWS
Most PWS use similar (or the same) components

More aggressive competition between PWS vendors
Similarities of systems reduce brand loyalty
Differentiation through price and system support

Gap between the best performing PWS and the Gap between the best performing PWS and the
best price-performance PWS is closing rapidlybest price-performance PWS is closing rapidly

Competition will occur via feature, not price
Repeats the known PC market phenomenon of discrete
pricing levels

ConclusionConclusion

Personal WorkstationsPersonal Workstations
High-end Wintel computers
Focus on high performance and scalability
Target markets are technical computing and DCC

PWS offer powerful support for 3D graphicsPWS offer powerful support for 3D graphics
Minimum: setup and rasterization for hi-res displays
Geometry acceleration available but not always needed
Performance is measured using workstation benchmarks,
e.g. Viewperf, Bench97 or customer benchmarks

PWS market is quickly adopting the PWS market is quickly adopting the
characteristics of the PC market characteristics of the PC market

Token Ring 16 Mb/s 14-15 Mb/s
Ethernet 10 Mb/s 7-8 Mb/s
Ethernet 100 Mb/s 90 Mb/s
Ethernet 1 Gb/s 120 Mb/s

Host performanceHost performance

Network performanceNetwork performance

Integer performance 650 MIPS
Floating-point performance 250 MFLOPS
Memory bandwidth 150 MB/s
Disk bandwidth 13 MB/s

System:
Pentium II Xeon @ 450 MHz, 440GX,
512 KB L2, 256 MB SDRAM/100,
9 GB Ultra-2 SCSI, Windows NT 4.0 w/ SP4

PWS PerformancePWS Performance

Page 1

Course 13

Rendering and Visualization in
 Parallel Environments
Rendering and Visualization in
 Parallel Environments

Architecture ofArchitecture of
Technical WorkstationsTechnical Workstations

Course 13

OutlineOutline

• Parallel Approaches
• Taxonomy
• Memory Models
• Programming Models
• Example Architectures

Page 2

Course 13

 Cluster ofCluster of
Workstations/PCsWorkstations/PCs
(loosely coupled)(loosely coupled)

Switch

Clients

Host

.....

Parallel Approaches (1)Parallel Approaches (1)

Course 13

Multi-processorMulti-processor
computerscomputers
(tightly coupled)(tightly coupled)

Parallel Approaches (2)Parallel Approaches (2)

Page 3

Course 13

Mixture of bothMixture of both

Switch

Parallel Approaches (3)Parallel Approaches (3)

Course 13

OutlineOutline

• Parallel Approaches
• Taxonomy
• Memory Models
• Programming Models
• Example Architectures

Page 4

Course 13

TaxonomyTaxonomy

•• Flynn´s taxonomy:Flynn´s taxonomy:

•• SISD - standard Workstation/PC class SISD - standard Workstation/PC class

•• SIMD - massively-parallel computer SIMD - massively-parallel computer

•• MISD - does not exist MISD - does not exist

•• MIMD - standard parallel computer type MIMD - standard parallel computer type

Course 13

OutlineOutline

• Parallel Approaches
• Taxonomy
• Memory Models
• Programming Models
• Example Architectures

Page 5

Course 13

Memory Models (1)Memory Models (1)

•• Distributed memory Distributed memory

•• Shared-memory Shared-memory
• Uniform Memory Access (UMA)
• Non-Uniform Memory Access (NUMA)

(distributed shared-memory)

Course 13

Memory Models (2)Memory Models (2)

•• Uniform Memory Access (UMA)Uniform Memory Access (UMA)

Interconnect

CPU CPU Memory....

Page 6

Course 13

Memory Models (3)Memory Models (3)

•• Non Uniform Memory Access (NUMA)Non Uniform Memory Access (NUMA)

Interconnect

CPU CPU Memory....

Interconnect

CPU CPU Memory....

In
te

rc
on

ne
ct

Course 13

Memory Models (4)Memory Models (4)

•• Why NUMA architecture?Why NUMA architecture?
• UMA system bus gets saturated (if too much traffic)

• UMA crossbar gets too complex (too expensive)

UMA architecture does not scale
 beyond a certain level

Page 7

Course 13

Memory Models (5)Memory Models (5)

•• Typical NUMA problemsTypical NUMA problems
• High synchronization costs

(of subsystem interconnect)

• High memory access latencies
(not in my experience)

• Might need memory sensitive strategies
 loose shared-memory advantage

Course 13

OutlineOutline

• Parallel Approaches
• Taxonomy
• Memory Models
• Programming Models
• Example Architectures

Page 8

Course 13

Programming Models (1)Programming Models (1)

Message-passing Message-passing (PVM, MPI)(PVM, MPI)
• Individual processes exchange messages

• Works on clusters and on parallel computers
(topology transparent to user)

• Manual parallelization

Course 13

Programming Models (2)Programming Models (2)

Threading (Threading (OpenMPOpenMP/threads)/threads)
• Efficient only on shared memory systems

• One process (environment), multiple threads)

• Cheap, implicit communication

• Different scheduling approaches

• Limited (semi-)automatic parallelization

Page 9

Course 13

OutlineOutline

• Parallel Approaches
• Taxonomy
• Memory Models
• Programming Models
• Example Architectures

Course 13

Examples Architectures (1)Examples Architectures (1)

TerminologyTerminology
• A NUMA subsystem/hypernode is the

lower hierarchy element of the total system

• A Node is a processing entity; a whole computer in
a cluster, or a CPU/processor in a parallel computer

Page 10

Course 13

Examples Architectures (2)Examples Architectures (2)

Terminology, Terminology, cont’dcont’d
• A process is an execution environment.

On message-passing systems, individual
processes are the smallest processing entity;
on thread systems, a process is providing the
environment for the threads.

Course 13

Examples Architectures (3)Examples Architectures (3)

Sun Enterprise x500/E10000Sun Enterprise x500/E10000
Interconnect: crossbar/bus

@ 12.8/3.2 GB/s
Max #CPUs: 30/64 @ 400 MHz
Max memory: 8/64 GB/NUMA
Pthread sched’: Mixed
OpenMP: Third Party

Node boards: 8/16
2/4 CPUs
-/ I/O on board

I/O

MEM

CPU

CPU

...

I/O

MEM

CPU

CPU

...

I/O

MEM

CPU

CPU

...

I/O

MEM

CPU

CPU

...

Gigaplane Bus or XB Crossbar

....

....

Page 11

Course 13

Interconnect: 2 x bus
@ 1.9 GB/s

Max #CPUs: 8 @ 440 MHz
Max memory: 16 GB/UMA
Pthread sched’: User/Kernel
OpenMP: Third Party

Memory Bus

CPU

Memory

CPU...

I/O

I/O Memory Bus

CPU ...

MC

CPU

Examples Architectures (4)Examples Architectures (4)

Hewlett-Packard N-classHewlett-Packard N-class

Course 13

Examples Architectures (5)Examples Architectures (5)

SGI 2x00 series (Origin 2000)SGI 2x00 series (Origin 2000)
Interconnect: crossbar /hypercube

@ 49.9 GB/s
Max #CPUs: 64 @ 300 MHz
Max memory: 128 GB/NUMA
Pthread sched’: Mixed
OpenMP: C/C++

(MIPSpro 7.3)

Node boards: 32
2 CPUs

CPU CPU

HUBMEM

CPU CPU

HUBMEM

CPU CPU

HUB MEM

CPU CPU

HUB MEM

RouterRouter

Crossbar

Crossbar

I/O

I/O

Page 1

Course 13

Rendering and Visualization
in Parallel Environments
Rendering and Visualization
in Parallel Environments

Parallel Programming

Course 13

Concurrency (1)Concurrency (1)

• Different notion of sequence
• Concurrent/parallel processes can behave

differently from sequential processes

• Execution order is not determined
• No control of scheduling

Page 2

Course 13

Concurrency (2)Concurrency (2)

• Critical sections need to be protected
• Parallel execution at virtually the same time

might produce inconsistent states

• Critical sections require synchronization

Course 13

Concurrency (3)Concurrency (3)

• No standard UNIX error handling with errno
• Multiple threads might produce multiple errors

• Return values of functions are used

Page 3

Course 13

Parallel Programming Models (1)Parallel Programming Models (1)

Message Passing
•• Individual processesIndividual processes

exchange messagesexchange messages
 explicit com’ explicit com’

•• Works on clusters and onWorks on clusters and on
parallel computersparallel computers
 Distributed memory Distributed memory
 and shared memory and shared memory

•• Manual parallelizationManual parallelization

Threading
• One process (environment),

multiple threads
 implicit com’

• (Usually) only on Symmetric
MultiProcessor systems
 (virtually) shared
 memory systems

• (Semi-) automatic parallelization too

Course 13

Parallel Programming Models (2)Parallel Programming Models (2)

Message Passing
•• Interconnection Interconnection network

(switches, (switches, ethernetethernet, etc.), etc.)

•• Distributed memory (noDistributed memory (no
common accessible memory)common accessible memory)

•• MPI 2.x / PVM 3.xMPI 2.x / PVM 3.x

•• Limited concurrency controlLimited concurrency control

Threading
•• One One common interconnect interconnect

(bus,crossbar)(bus,crossbar)

•• UMA / NUMA memoryUMA / NUMA memory

•• OpenMP / pthreadsOpenMP / pthreads

•• Flexible concurrency controlFlexible concurrency control

Page 4

Course 13

OutlineOutline

• Message Passing
• Message Passing Interface (MPI)

• (Parallel Virtual Machine) (PVM)

• Shared Memory
• OpenMP

• Threading with Pthreads

Course 13

Message Passing (1)Message Passing (1)

OverviewOverview
• Individual processes

• Explicit communication by exchange of messages

• On shared-memory and on distributed memory systems

Page 5

Course 13

Message Passing (2)Message Passing (2)

Overview, cont’dOverview, cont’d
• Manual parallelization and communication

• High development costs

• Expensive communication

Course 13

Message Passing (3)Message Passing (3)

Message-Passing
Interface (MPI)

• Limited session control

• Supports portability only
• Rich com’ functionality
• Performance oriented

Parallel Virtual Machine
(PVM)

• Rich session control

• Supports portability and
interoperability

• Flexibility and fault-tolerance

Page 6

Course 13

Message Passing (4)Message Passing (4)

When to use MPI, when to use PVM?
(Answers in Geist et al. 96)

• MPI for parallel computers

• PVM for clusters

 However, PVM seems to loose significance However, PVM seems to loose significance

Course 13

OutlineOutline

• Message Passing
• Message Passing Interface (MPI)

• (Parallel Virtual Machine) (PVM)

• Shared Memory
• OpenMP

• Threading using Pthreads

Page 7

Course 13

Outline - MPIOutline - MPI

• General
• Management
• Grouping
• Communication

Course 13

MPI - General (1)MPI - General (1)

Message Passing InterfaceMessage Passing Interface
• Current version 2 (MPI 2.x)

• Supports portability, not interoperability

• Works on clusters, but focus is on
“large multi-processors”

• Used in PVR (Part Three, case study)

Page 8

Course 13

MPI - General (2)MPI - General (2)

Message Passing Interface, cont’dMessage Passing Interface, cont’d
• Individual processes synchronize at one point of

execution, or exchange messages

• Rich variety of communication mechanisms

• (Almost) no resource/session management

Course 13

MPI - General (3)MPI - General (3)

Message Passing Interface, cont’dMessage Passing Interface, cont’d
• Task distribution done by vendor implementation

• Process topology can be specified to optimize
communication

• Consistent name space

Page 9

Course 13

Outline - MPIOutline - MPI

• General
• Management
• Grouping
• Communication

Course 13

MPI - ManagementMPI - Management

Management:Management:
• Individual process subscribe to MPI:

int MPI_init(int* argc, char **argv);

• Parallel code/tasks, synchronization and
exchange of messages

• Unsubscribing from MPI:
int MPI_finalize(void);

error return code

Page 10

Course 13

Outline - MPIOutline - MPI

• General
• Management
• Grouping
• Communication

Course 13

MPI - Grouping (1)MPI - Grouping (1)

•• Groups provideGroups provide
• Support for parallel libraries

(hides internal communication)

• Scope for communication (com’) and
synchronization (sync’)

•• Elements: communicator, group,Elements: communicator, group,
contextcontext

Page 11

Course 13

MPI - Grouping (2)MPI - Grouping (2)

Communicator - -
container for com’ operationscontainer for com’ operations
• Intracommunication - within a group

• Point-To-Point com’ (pairwise)
• Collective com’ (root to members)

Course 13

MPI - Grouping (3)MPI - Grouping (3)

Communicator, cont’d
• Intercommunication - between two groups

• Point-To-Point com’ only

• Predefined standard communicator:
MPI_COMM_WORLD, MPI_COMM_SELF

Page 12

Course 13

MPI - Grouping (4)MPI - Grouping (4)

Group - enumerates participants
 of com’ and sync’
• Unique order/id (rank)

int MPI_Comm_rank(MPI_Comm com, int* rank);

int MPI_Comm_size(MPI_Comm com, int* npart);

• Predefined standard group: MPI_GROUP_EMPTY

int MPI_Comm_group(MPI_Comm com, MPI_Group* grp);

Course 13

MPI - Grouping (5)MPI - Grouping (5)

Context - defines “ universe ” of
communicator
• Avoids interference between

different com’

Page 13

Course 13

Outline - MPIOutline - MPI

• General
• Management
• Grouping
• Communication

Course 13

MPI - Com’ (1)MPI - Com’ (1)

Two different kinds of com’Two different kinds of com’
• Point-to-Point com’ (pairwise)

(intra- and intercommunication)

• Collective com’ (intracommunication only)

• Same order of com’ operations avoids deadlocks!

• Can be blocking or non-blocking

Page 14

Course 13

MPI - Com’ (2)MPI - Com’ (2)

Point-To-Point com’Point-To-Point com’
• Message attached to envelope

(id, source/dest. rank, tag, communicator)

• Blocking com’: MPI_Send(),MPI_Recv();

• Non-blocking com’: MPI_ISend(), MPI_IRecv();

 Wait until operation is completed: MPI_Wait();

• Intermediate com’ (different modes)

Course 13

MPI - Com’ (3)MPI - Com’ (3)

Point-To-Point com’, Point-To-Point com’, cont’dcont’d - -
• Checks incoming messages:

int MPI_Iprobe(int source, int tg, ...);

source: MPI_ANY_SOURCE

tg: MPI_ANY_TAG

Page 15

Course 13

MPI - Com’ (4)MPI - Com’ (4)

Collective CommunicationCollective Communication
• Only within a group

• All members of group participate

Course 13

MPI - Com’ (5)MPI - Com’ (5)

Collective Communication, cont’dCollective Communication, cont’d
• Barrier synchronization:
MPI_Barrier();

• Broadcast (blocking/non-blocking?):
MPI_Bcast();

Page 16

Course 13

OutlineOutline

Message Passing
Message Passing Interface (MPI)

(Parallel Virtual Machine) (PVM)

Shared Memory
OpenMP

Threading with Pthreads

Course 13

PVMPVM

No time for PVM in this half-day course.No time for PVM in this half-day course.
Information is available in the course notes.Information is available in the course notes.

Page 17

Course 13

Outline - PVMOutline - PVM

• General
• Management
• Communication

Course 13

PVM - General (1)PVM - General (1)

Parallel Virtual MachineParallel Virtual Machine
• Current version 3 (PVM 3.x)

• Good for communication (com’) in cluster

• Virtual Machine interoperability

Page 18

Course 13

PVM - General (2)PVM - General (2)

Parallel Virtual Machine, cont’dParallel Virtual Machine, cont’d
• Meets specific needs of cluster computing:

• Dynamic resource management
• Fault-tolerant applications

Course 13

PVM - General (3)PVM - General (3)

Parallel Virtual Machine, cont’dParallel Virtual Machine, cont’d
• One master: distributes data and subtasks

• Several slaves: perform subtasks on data

• Participating systems listed in hostfile

• PVM daemons (virtual machines) are
running on participating systems

Page 19

Course 13

Outline - PVMOutline - PVM

• General
• Management
• Communication

Course 13

PVM - Management (1)PVM - Management (1)

•• PVM daemons/virtual machines startedPVM daemons/virtual machines started

•• Master logs on local virtual machineMaster logs on local virtual machine
• determines available hardware (systems)

• allocates name space for slaves (task identifiers tid)

• assigns subtasks to slaves

• checks state of slaves distributes data

flow

...

Page 20

Course 13

PVM - Management (2)PVM - Management (2)

•• Slaves perform subtasks on dataSlaves perform subtasks on data

•• Master collects results/final shut-downMaster collects results/final shut-down

flow

...

Course 13

PVM - management (3)PVM - management (3)

• int pvm_mytid(void);

• int pvm_exit(void);

• void pvm_config(int* nproc, ...);

• int pvm_spawn(...);

• int pvm_joingroup(char *groupname, ...);

• int pvm_lvgroup(char *groupname, ...);

• int pvm_barrier(char *groupname);

• int pvm_kill(int tid);

Page 21

Course 13

Outline - PVMOutline - PVM

• General
• Management
• Communication

Course 13

PVM - Com’ (1)PVM - Com’ (1)

Com’ sequence:Com’ sequence:
• Initialize send buffer

• Encode data for sending into buffer

• Send data in buffer

• Receive data in buffer

• Decode data from buffer

data

active send buffer

active receive buffer

data

Page 22

Course 13

PVM - Com’ (2)PVM - Com’ (2)

Initializing, encoding, and decoding of data
(other datatypes too)

• int pvm_initsend(int encoding);

• int pvm_pkint(int* data, int size, ...);

• int pvm_upkint(int* data, int size, ...);

Course 13

PVM - Com’ (3)PVM - Com’ (3)

Point-To-Point com’:
• int pvm_send(int tid, int tag);

• int pvm_recv(int tid, int tag); // blocking

• int pvm_nrecv(int tid, int tag); // non-blocking

Page 23

Course 13

PVM - Com’ (4)PVM - Com’ (4)

• Broadcasts (non-blocking)

• int pvm_bcast(char *groupname, int tag);

• int pvm_mcast(int* tid, int n , int tag);

• Only one com’ buffer at a time!

Course 13

OutlineOutline

• Message Passing
• Message Passing Interface (MPI)

• (Parallel Virtual Machine) (PVM)

• Shared Memory
• OpenMP

• Threading with Pthreads

Page 24

Course 13

Shared Memory (1)Shared Memory (1)

OverviewOverview
• Efficient only on shared memory systems

• One process (environment), multiple threads

• Implicit, cheap communication

• Lower development costs

Course 13

Shared Memory (2)Shared Memory (2)

OpenMP
•• Compiler directivesCompiler directives
•• Needs manual tuningNeeds manual tuning
•• High-level parallelHigh-level parallel

programming less controlprogramming less control
•• Somewhat limited availabilitySomewhat limited availability
•• Use (usually) pthreadsUse (usually) pthreads

as basisas basis
•• Easy Easy serializableserializable

Pthreads
•• Explicit (p)threadsExplicit (p)threads
•• EfficientEfficient
•• Lower-level parallelLower-level parallel

computing better controlcomputing better control
•• Widely AvailableWidely Available

Page 25

Course 13

OutlineOutline

• Message Passing
• Message Passing Interface (MPI)

• (Parallel Virtual Machine) (PVM)

• Shared Memory
• OpenMP

• Threading with Pthreads

Course 13

OpenMP (1)OpenMP (1)

OverviewOverview
• Parallelization using mainly compiler directives

• Good for loop parallelization

• Support only for Fortran (77 and up)
and C/C++

Page 26

Course 13

OpenMP (2)OpenMP (2)

Execution ModelExecution Model

Master thread Sequential region

Parallel region

Sequential region

....

Master thread

Barrier

Team of threads

Course 13

OpenMP (3)OpenMP (3)

Compiler Directives - Parallel Regions
• #pragma omp parallel [<clauses>] {..}

specifies parallel region; clauses can declare
objects to be shared or private

• #pragma omp for {..} specifies a parallel for-loop
• #pragma omp section {..} specifies a parallel section

Page 27

Course 13

OpenMP (4)OpenMP (4)

Compiler Directives - Synchronization
• #pragma omp single {..} specifies a block which

is only executed once

• #pragma omp master {..} specifies a block which
is only executed by the master thread

• #pragma omp flush [(list)] ensures a unified
memory view

Course 13

OpenMP (5)OpenMP (5)

Compiler Directives - Synchronization, cont’d
• #pragma omp critical [(name)] {..} specifies a

critical region which is executed only
sequentially

• #pragma omp atomic <statement> specifies an
atomic assignment

• #pragma omp barrier synchronizes all threads
of a team

Page 28

Course 13

OpenMP (6)OpenMP (6)

Compiler Directives - Memory Clauses
• #pragma omp for private(list) specifies a

thread local variables

• #pragma omp for shared (list) specifies
variables which are shared (default)

• #pragma omp for reduction(op:list) specifies
shared variable reduction

• Memory clauses are important for
performance

Course 13

OpenMP (7)OpenMP (7)

Library Functions (need omp.h header file)
• void omp_set_num_threads(int nthreads);

 specifies number of threads in a team
• int omp_get_num_threads(void); returns number

of threads in the current team
• int omp_in_parallel(void);

returns non-zero in parallel regions,
zero in sequential regions

Page 29

Course 13

OpenMP (8)OpenMP (8)

Library Functions - Synchronization
• void omp_init_lock(omp_lock_t *lock);

• void omp_destroy_lock(omp_lock_t *lock);

initialize and destroy lock (similar to mutex)

Course 13

OpenMP (9)OpenMP (9)

Library Functions - Synchronization, cont’d
• void omp_set_lock(omp_lock_t *lock); sets lock

• void omp_unset_lock(omp_lock_t *lock); releases lock

• void omp_test_lock(omp_lock_t *lock); tries to set lock,
but function does not block if lock is already set.

• On SGI: MIPSpro 7.3: CC -mp -MP:openmp=ON

Page 30

Course 13

OpenMP (10)OpenMP (10)

for (i=0; i<N; i++) {

 for (j=0; j<N; j++) {

 tmp = 0;

 for (k=0; k<N; k++) {

 tmp += A[i][k] * B[k][j];

 }

 C[i][j] = tmp;

} }

private(k) reduction (+:tmp)#pragma omp parallel for

Course 13

OpenMP (11)OpenMP (11)

for (i=0; i<N; i++) {

 #pragma omp parallel for private(j,k,tmp)

 for (j=0; j<N; j++) {

 tmp = 0;

 for (k=0; k<N; k++) {

 tmp += A[i][k] * B[k][j];

 }

 C[i][j] = tmp;

} }

Page 31

Course 13

OutlineOutline

• Message Passing
• Message Passing Interface (MPI)

• (Parallel Virtual Machine) (PVM)

• Shared Memory
• OpenMP

• Threading with Pthreads

Course 13

Threading with Pthreads (1)Threading with Pthreads (1)

OverviewOverview
• Different scheduling models (user, kernel, mixed)

• Flexible programming for different problems

• Might be good even on single processor systems

Page 32

Course 13

Threading with Pthreads (2)Threading with Pthreads (2)

Overview, cont’dOverview, cont’d
• Many thread-packages

• We focus on the
POSIX standard 1003.1 for threads (pthreads)

Course 13

Outline - ThreadingOutline - Threading

• Revisiting Threads
• Controlling Pthreads
• Pthread Synchronization
• Additional Topics

Page 33

Course 13

Revisiting ThreadsRevisiting Threads

Revisiting threads on threads on
shared-memory systemsshared-memory systems
• Shared execution context (one process,

multiple threads) (common address/data space)

• Fast context switch (due to shared context)

• Implicit communication via shared-memory

Course 13

Outline - ThreadingOutline - Threading

• Revisiting Threads
• Controlling Pthreads
• Pthread Synchronization
• Additional Topics

Page 34

Course 13

Controlling Pthreads (1)Controlling Pthreads (1)

Pthread lifetime
• Creation - pthread_create

• Work life - parallel code

• End of existence - pthread_exit, pthread_detach/
 pthread_join

Course 13

Controlling Pthreads (2)Controlling Pthreads (2)

Pthread creation
int pthread_create(pthread_t *id,

const pthread_attr_t* ptr,
void* (*thread_routine) (void*),
void* arg);

Pthread id start executing function thread_routine
with pointer to parameter array arg.

Page 35

Course 13

Controlling Pthreads (3)Controlling Pthreads (3)

• Pthread_t pthread_self(void);

returns identifier of calling pthread

• int pthread_equal(pthread_t t1, pthread_t t2);

determines if t1 and t2 are referring to the same
pthread

Course 13

Controlling Pthreads (4)Controlling Pthreads (4)

End of existence
• void pthread_exit(void *ret_val);

• int pthread_detach(pthread_t id);

• int pthread_join(pthread_t idB, void **ret_val);

Calling pthread waits until pthread idB terminates.
• Example code: see course notes

Page 36

Course 13

Outline - ThreadingOutline - Threading

• Revisiting Threads
• Controlling Pthreads
• Pthread Synchronization
• Additional Topics

Course 13

Pthread Synchronization (1)Pthread Synchronization (1)

• Access to shared resources needs to be
 protect by synchronization.

• Different synchronization mechanisms:
• Mutexes (MUTual EXclusion)/semaphores

• Conditions

• Barriers (not part of pthread standard)

Page 37

Course 13

Pthread Synchronization (2)Pthread Synchronization (2)

Mutexes
• Allows access for only one thread at a time

(binary access)

• We do not use mutex attributes
(we pass NULL at initialization).

Course 13

Pthread Synchronization (3)Pthread Synchronization (3)

Semaphores
• Similar to mutex, but allows multiple access

to Resource (“counting semaphores”).

• Semaphores not specified in pthread standard,
but POSIX semaphores can be used.

Page 38

Course 13

Pthread Synchronization (4)Pthread Synchronization (4)

Initialization of static mutexes ...
• pthread_mutex_t mutex = PTHREAD_MUTEX_INIALIZER;

... of dynamic mutexes (after allocation)
• int pthread_mutex_init(pthread_mutex_t *mutex,

pthread_mutexattr_t *attr);

• int pthread_mutex_destroy(pthread_mutex_t *mutex);

Course 13

Pthread Synchronization (5)Pthread Synchronization (5)

Using mutexes
• int pthread_mutex_lock(pthread_mutex_t *mutex);

• int pthread_mutex_trylock(pthread_mutex_t *mutex);
(returns EBUSY/EOK)

• int pthread_mutex_unlock(pthread_mutex_t *mutex);

• Example code: see course notes

Page 39

Course 13

Pthread Synchronization (6)Pthread Synchronization (6)

Conditions -
“Condition variables are for signaling , not for
 mutual exclusion.” (Butenhof)

• Exchange information on the state of a shared resource

• Always check predicate (wake-up due to wrong signal)

• Signal wakes-up first pthread in waiting queue. If no
pthread is waiting, it will be ignored.

Course 13

Pthread Synchronization (7)Pthread Synchronization (7)

Conditions, cont’d
• They are always connected with exactly one mutex

• Before waiting/signaling, mutex must be locked

• After wake-up/signaling, mutex must be unlocked

• Automatically unlocked while waiting

Page 40

Course 13

Pthread Synchronization (8)Pthread Synchronization (8)

Initialization of static condition variables ...
• pthread_cond_t mutex = PTHREAD_COND_INIALIZER;

... of dynamic condition variables
(after allocation)

• int pthread_cond_init(pthread_cond_t *mutex,
pthread_condattr_t *attr);

• int pthread_cond_destroy(pthread_cond_t *mutex);

Course 13

Pthread Synchronization (9)Pthread Synchronization (9)

Using condition variables
• int pthread_cond_wait(pthread_cond_t *cond,

pthread_mutex_t *mutex);

• int pthread_cond_timed_wait(pthread_cond_t *cond,
pthread_mutex_t *mutex,
struct timespec *exp);

Page 41

Course 13

Pthread Synchronization (10)Pthread Synchronization (10)

Using condition variables, cont’d
• int pthread_cond_signal(pthread_cond_t *cond);

• int pthread_cond_broadcast(pthread_cond_t *cond);

• Example code: see course notes

Course 13

Pthread Synchronization (11)Pthread Synchronization (11)

Barrier synchronization
• Threads are blocked at a barrier, until a specified

number of threads has arrived at barrier.

• No barrier synchronization in pthread standard

Page 42

Course 13

Pthread Synchronization (12)Pthread Synchronization (12)

Barrier synchronization, cont’dBarrier synchronization, cont’d
• Can be simulated:

• Join cascade
• Dave Butenhof’s example

• Example code: see course notes

Course 13

Outline - ThreadingOutline - Threading

• Revisiting Threads
• Controlling Pthreads
• Pthread Synchronization
• Additional Topics

Page 43

Course 13

Additional Topics (1)Additional Topics (1)

Concurrent memory visibilityConcurrent memory visibility
• Data caches of modern processors introduce

different views of memory of the different pthreads

• Problem is worse on NUMA architectures,
because of larger number of memory hierarchies

• Information visible for one pthread is not necessarily
the same as for another pthread.

Course 13

Additional Topics (2)Additional Topics (2)

Concurrent memory visibility, cont’dConcurrent memory visibility, cont’d
• Pthread standard defines situations for a

consistent memory view:

• after starting pthreads
• after explicit or implicit (conditions)

unlocking of mutexes

Page 44

Course 13

Additional Topics (3)Additional Topics (3)

Concurrent memory visibility, cont’dConcurrent memory visibility, cont’d
• Situations for a consistent memory view:

• after joining a pthread (termination of the
other pthread)

• After receiving a wake-up signal/broadcast

Course 13

Additional Topics (4)Additional Topics (4)

CancellationCancellation
• Usually, pthread perform subtask until it is done.

• Some situations might require an earlier
termination (i.e., search abort)

• Pthread id is needed for cancellation
int pthread_cancel(pthread_t id);

Page 45

Course 13

Additional Topics (5)Additional Topics (5)

Cancellation, cont’d
• Cancellation states and types needs to be set:

 pthread_cancelstate(), pthread_canceltype();

Three basic cancellation modes:
• Cancellation mode disabled

Course 13

Additional Topics (6)Additional Topics (6)

Cancellation, cont’d
• Cancellation mode deferred: Cancellation

only at implicit or explicit cancellation points

• Implicit cancellation points:
pthread_cond_wait, pthread_cond_timedwait,
pthread_join, blocking system functions, ...)

• Explicit cancellation points:
int pthread_testcancel(void);

Page 46

Course 13

Additional Topics (7)Additional Topics (7)

Cancellation, cont’dCancellation, cont’d
Cancellation modes asynchronous: Cancellation at

any time from now; asynchronous cancellation is
an emergency kind of cancellation. It might cause
data corruption, dead locks, ...

Course 13

Additional Topics (8)Additional Topics (8)

Debugging hintsDebugging hints
• Never count on an execution order

(avoid thread races/race conditions)

• Avoid potential deadlock situations
(the less synchronization mechanism, the better)

Page 47

Course 13

Additional Topics (9)Additional Topics (9)

Debugging hints, Debugging hints, cont’cont’
• Avoid priority inversion (the use of real-time

scheduling strategies can cause deadlocks;
priority vs. mutex)

• Too small shared stacks (pthread attributes)
can cause “strange” effects

Course 13

Additional Topics (10)Additional Topics (10)

Performance hints
• Mutexes are not for free

• Set pthread concurrency level using
int pthread_setconcurrency(int npthreads);

to advice the scheduler (UNIX98)

• int pthread_getconcurrency(void);

to determine concurrency level

Page 48

Course 13

Additional Topics (11)Additional Topics (11)

Performance hints, cont’d
• On IRIX implementations: setenv PT_ITC forces

the system to start as many light-weight processes
(sprocs) as possible; IRIX 6.5 uses
pthread_setconcurrency(..)

• On Solaris: thr_setconcurrency(int nthreads);
is necessary to guarantee concurrent execution
single processor systems

Course 13

AcknowledgementsAcknowledgements

•• Work has been supported byWork has been supported by
• MedWis program of the German Federal Ministry for

Education and Research

• Hewlett-Packard, Workstation Systems Lab,
Ft. Collins, CO

•• Thanks to Michael Meißner and Michael DoggettThanks to Michael Meißner and Michael Doggett
for proof reading and helpful discussion.for proof reading and helpful discussion.

Bengt-Olaf SchneiderBengt-Olaf Schneider
IBM T.J. Watson Research CenterIBM T.J. Watson Research Center

Parallel Polygon Parallel Polygon
RenderingRendering

Problem Definition and General ConceptsProblem Definition and General Concepts

Classification of Parallel Rendering AlgorithmsClassification of Parallel Rendering Algorithms

Load BalancingLoad Balancing

Practical IssuesPractical Issues
Parallelizing Geometry Processing
Exploiting Graphics Hardware

OutlineOutline

Render a polygonal scene using multiple Render a polygonal scene using multiple
processors and/or threadsprocessors and/or threads

Parallelization possible in every stage and Parallelization possible in every stage and
overlapping execution of stagesoverlapping execution of stages

Each stage maybe implemented on the same or Each stage maybe implemented on the same or
on separate processorson separate processors

GeometryGeometryGeometry
RasterizerRasterizerRasterizer DisplayGeometryGeometryApplication

The ProblemThe Problem

RenderingRendering
Still-image rendering (single-frame)
Animation (multiple-frames)
Rendering algorithm and rendering quality

Parallel ArchitecturesParallel Architectures
Tightly-coupled SMP
Loosely-coupled Clusters
Graphics accelerators or software renderers

Rendering ScenariosRendering Scenarios

Multiple-Instruction, Multiple-Data (MIMD)Multiple-Instruction, Multiple-Data (MIMD)
High level of independence between processors
Requires synchronization between processors
Best for task requiring many data-dependent branches
Used for geometry processing

Single-Instruction, Multiple-Data (SIMD)Single-Instruction, Multiple-Data (SIMD)
Tight coupling between processors
Implicit synchronization, good scalability
Best for tasks requiring same operations for many data
Used for rasterization and fragment processing

Pipelining a.k.a. functional parallelizationPipelining a.k.a. functional parallelization
Natural for many algorithms, e.g. graphics pipeline

MIMD, SIMD, PipeliningMIMD, SIMD, Pipelining

Classification of Parallel RenderersClassification of Parallel Renderers

Object-space partitioningObject-space partitioning
Most often used for geometry processing
Each task handles part of the scene, e.g. high-level objects,
triangles etc.

Image-space partitioningImage-space partitioning
Most often used for rasterization
Each task processes parts of the image, e.g. pixels,
scanlines, tiles, etc.

Object vs. Image PartitioningObject vs. Image Partitioning

Popular choice for rendering of animationsPopular choice for rendering of animations
ProcessProcess

Broadcast data to all processor
Assign frames (i.e. viewpoint etc.) to n processors
Render n frames
Display or store n frames

Considered to be Considered to be embarrassingly parallelembarrassingly parallel
Rendering performance scales linearly with number of
processors
But: Data distribution and collection (communication), forms
serial overhead and may overshadow computation and
rendering ... no speedup & bad scalability !!

Temporal PartitioningTemporal Partitioning

Typical parallel polygon rendering systemTypical parallel polygon rendering system
Geometry processing performed in object space,
i.e. each processor handles a subset of the scene
Rasterization done in image space,
i.e. each processor handles a subset of the screen

Objects must be Objects must be sortedsorted
from object space into from object space into
image spaceimage space

Classification by where Classification by where
the sorting occurs.the sorting occurs.

R

G

R

G

R

G

R

G

Classification by SortingClassification by Sorting

Operation:Operation:
Round-robin assignment of
objects to geometry proc's
Sort objects to screen regions
Rasterizers responsible for
screen regions

PropertiesProperties
Good load-balancing during
geometry processing (clipping!)
Possible load-balancing
problems in rasterizer

Most popular schemeMost popular scheme

R

G

R

G

R

G

R

G

Sort-Middle RenderingSort-Middle Rendering

R

G

R

G

R

G

R

G

Composited Pixel

OperationOperation
GR-pair for full screen for all obj's
Compositing step determines
visible objects / pixels

PropertiesProperties
Generally good load balancing
(clipping, object size
in screen space !)
Requires large
bandwidth
No temporal order,
transparency and
anti-aliasing hard

E.g. PixelFlowE.g. PixelFlow

Sort-Last RenderingSort-Last Rendering

Quick mapping to screen Quick mapping to screen
regions and sortingregions and sorting

Properties:Properties:
Less sorting for highly
tesselated objects
Potential for load-imbalance
due to uneven spatial
distribution of objects

No actual system (yet).No actual system (yet).

R

G

R

G

R

G

R

G

Sort-First RenderingSort-First Rendering

Objective is to ...Objective is to ...
distribute work evenly among all processors
have all processors finish their work at the same time

(One) Definition of load balance:(One) Definition of load balance:
 T T ff

LB =LB =
 T T

LB Load balance
Tf Time fastest processor finishes
T Total processing time

Tf

T

T-Tf

Load BalancingLoad Balancing

Geometry ProcessingGeometry Processing
Clipping

Trivial accept/reject takes less work than actual clipping
Vertex Count

Different polygons have different number of vertices (e.g.
clipping)

Tesselation
Higher order primitives may be tesselated into different number
of basic primitives (triangles)

Rendering parameters
Number of lights, shading type, texturing algorithm etc.

RasterizationRasterization
Spatial primitive distribution

Objects tend to be clustered in certain screen areas

Load Balancing ProblemsLoad Balancing Problems

TerminologyTerminology
Task

Basic unit of work that can be assigned to a processor, e.g.
objects, primitives, scanlines, pixels, etc.

Granularity
Minimum number of tasks that are assigned to a processor, e.g.
10 scanlines or 128x128 pixel regions.

Coherence
Neighboring elements (in space or time) are similar, e.g.
frames, scanline, pixels
Exploited to speed up rendering calculations, e.g. for
rasterization
Parallelization may destroy / hide coherence for a given
processor

Load Balancing IssuesLoad Balancing Issues

StaticStatic
Fixed assignment of tasks to processors

DynamicDynamic
On-the-fly assignment of tasks to processors

AdaptiveAdaptive
Assign tasks such that all processors have approximately the
same load

Load Balancing StrategiesLoad Balancing Strategies

All tasks assigned before start of rendering, e.g.All tasks assigned before start of rendering, e.g.
Round-robin object assignmet in sort-middle architectures
Assignment of screen regions to rasterizers (SGI RE/IR,
Pixel-planes 4)

Relies on assumptions about statistics of the Relies on assumptions about statistics of the
model to achieve load balancing, e.g.model to achieve load balancing, e.g.

Most objects requires same amount of work to process
Interleaving of pixels will give each
processor equal share of busy and
less busy screen regions
But: Reduces coherence between
pixels within a processor
All frames of an animation incur
approximately same workload

Static Load BalancingStatic Load Balancing

Task are assigned on demand, i.e. the next task Task are assigned on demand, i.e. the next task
goes to the first available processorgoes to the first available processor

Assume that there are more tasks than processors
Granularity Ratio = #tasks / #processors > 1
Upper bound for load imbalance is difference between largest
and smallest task
Simple optimization: (if known) assign largest tasks first

Task-processor assignment not known a prioriTask-processor assignment not known a priori
Maintains a task list that is depleted by processors
Requires dynamic (sic) distribution of tasks during runtime
Tasks may not complete in same order as issued
Some APIs require temporal ordering, e.g. OpenGL !

Dynamic Load BalancingDynamic Load Balancing

Rasterization modules for Rasterization modules for
128 x 128 pixel regions128 x 128 pixel regions

80 regions for 1280 x 1024 display
Several modules in a system

Idle rasterizers process next Idle rasterizers process next
unprocessed regionunprocessed region

More efficient than Pixel-planes 4
Scalability for cost, performance
and display size

1 2 3 4 1 2 3 1 2 4

Pixel-planes 5Pixel-planes 5

Create tasks which will require (approximately) Create tasks which will require (approximately)
the same amount of processing timethe same amount of processing time

Static adaptive load balancingStatic adaptive load balancing
Predictive: Estimate the processing time for each task
Reactive: Deduce processing time from previous frame
Requires separate step to determine task assignments

Dynamic adaptive load balancingDynamic adaptive load balancing
Monitor workload of processors
Reassign tasks from busy processors to idle processors
Requires concurrent monitoring process

Let's look at concrete load balancing Let's look at concrete load balancing

Adaptive Load BalancingAdaptive Load Balancing

Usually performed in 2 steps:Usually performed in 2 steps:

Load estimationLoad estimation
Count primitives per screen region
Estimate cost per primitive

Work distributionWork distribution
Subdivide (tile) screen to create
regions with approximately equal
load, or ...
Assign fixed-sized regions (cells) to
processors to create approximate
load balance

Adaptive Load Balancing AlgorithmsAdaptive Load Balancing Algorithms

Determine number of primitives per regionDetermine number of primitives per region

Combine low-load regions Combine low-load regions

Split high-load regions in halfSplit high-load regions in half

No control over location of splitNo control over location of split
and hence chance for low/no and hence chance for low/no
effectiveness effectiveness

Roble's MethodRoble's Method

Count number of centroids per regionCount number of centroids per region

Split regions using distribution of centroidsSplit regions using distribution of centroids
Median-cut algorithm to subdivide such that both new regions
contain same number of centroids

Large effort for Large effort for
sorting primitivessorting primitives

No accounting forNo accounting for
primitive sizeprimitive size

Whelan's MethodWhelan's Method

Tally primitives overlapping each regionTally primitives overlapping each region
Build quadtree of all regions, assigning number Build quadtree of all regions, assigning number
overlapping primitives at each quadtree nodeoverlapping primitives at each quadtree node
Top-down subdivision of quadtree for nodes Top-down subdivision of quadtree for nodes
with highest primitive countwith highest primitive count
May still leave unbalancedMay still leave unbalanced
work distributionwork distribution

Increased granularity ratio

Big primitives are countedBig primitives are counted
multiple timesmultiple times

Overestimation of work

Whitman's Method (1992)Whitman's Method (1992)

Initial subdivision into tiles for Initial subdivision into tiles for
a given granularity ratio (here: a given granularity ratio (here:
2)2)

During rendering, processors During rendering, processors
who finish early "steal" work who finish early "steal" work
from busy processors by from busy processors by
splitting work regionsplitting work region

An idle processor finds the processor
with most work left
Split only if remaining work exceeds a
threshold

Whitman's Method (1994)Whitman's Method (1994)

Mesh-based adaptive hierarchical decompositionMesh-based adaptive hierarchical decomposition
Based on small screen cells, i.e. a fine, regular mesh

Count primitives overlapping each cell in inverse Count primitives overlapping each cell in inverse
proportion to their sizeproportion to their size

Avoid accounting problems like in Whitman's method
Heuristic to balance constant geometry cost and
size-dependent rasterization cost (experimentally justified)

Build a summed-area tableBuild a summed-area table
Subdivide screen into regionsSubdivide screen into regions
along cell boundariesalong cell boundaries

similar to median-cut algorithm
but cheaper because of SAT

Mueller's Method: MAHDMueller's Method: MAHD

Reactive method, load balancing between Reactive method, load balancing between
framesframes

Tally number of primitives overlapping each cellTally number of primitives overlapping each cell
Estimate processing time for each cellEstimate processing time for each cell
Greedy, multiple-bin-packing algorithm to Greedy, multiple-bin-packing algorithm to
assign regions to processorsassign regions to processors

Sort regions by descending
polygon counts
Assign next region to processor
with lightest workload

Ellsworth's MethodEllsworth's Method

Princeton Display Wall (1)Princeton Display Wall (1)
Multi-projector systemMulti-projector system

Each projector is driven by a
dedicated computer
Computers are network-connected
Load-balancing is achieved by
dividing the projection screen into
virtual, non-overlapping tiles
Sort-first architecture

Each computer xforms & renders all objects in a virtual tile
Right before display, pixel data are sent to the computer who
owns the corresponding screen tile

Coarse-grain worload decompositionCoarse-grain worload decomposition
Requires fast frame-buffer reads and fast Requires fast frame-buffer reads and fast
networksnetworks
Assignment strategy must balance tile-object Assignment strategy must balance tile-object

Princeton Display Wall (2)Princeton Display Wall (2)

Grid Bucket AssignmentGrid Bucket Assignment
Greedy algorithm unsing grid cells smaller than screen tile
For each tile compute cost for rendering & xmitting a tile
Distribute tiles from the server with the largest workload to the
server with the smallest workload

KD-SplitKD-Split
Subdivide the screen into exactly P regions for P computers
to minimize overhead
Chose partition to balance workload between two halves
Subdivide each half further
Better workload estimate overcomes some of the problems
with similar approaches (Roble, Whelan, Whitman 1992)

Parallel Geometry ProcessingParallel Geometry Processing

Exploiting Graphics HardwareExploiting Graphics Hardware

Practical IssuesPractical Issues

Geometry ProcessingGeometry Processing
Transformations, Lighting, Clipping, Texture Calculations

Round-robin distributionRound-robin distribution
Each processor works on 1/n objects
Objects are sent to rasterizers as soon as possible
Load balancing problems as objects may require different
amounts of work (clipping, lighting, ...)

Dynamic assignmentDynamic assignment
First available processor receives next object

Limitations of these strategies:Limitations of these strategies:
Temporal object ordering is lost

Parallel Geometry ProcessingParallel Geometry Processing

Required by some APIs, e.g. OpenGLRequired by some APIs, e.g. OpenGL

Important for algorithms that rely on the order Important for algorithms that rely on the order
in which objects are drawn onto the screenin which objects are drawn onto the screen

Non z-buffer hidden surface removal, e.g. painter's algorithm
Multi-pass algorithms, e.g. transparency, overlays,
solid-modeling, priority algorithm

Possible solutionsPossible solutions
Sequence numbers (time stamps) enforce strict ordering
Barriers to ensure ordering between groups of objects (see
Igehy, Stoll and Hanrahan, Siggraph 98)

Temporal OrderingTemporal Ordering

Parallel Polygon Rendering HardwareParallel Polygon Rendering Hardware
Typically sort-middle architecture
Rasterization and setup always in hardware
Geometry calculations either in hardware or in software

Parallel Hardware RasterizationParallel Hardware Rasterization
Most systems interleave pixels or scanlines,
e.g. SGI RE/IR, 3Dlabs, Intergraph
Some systems overlay a coarser tiling scheme for virtual
rasterizers, e.g. Pixel-planes 5, Talisman, PowerVR, Oak

Graphics Hardware ConceptsGraphics Hardware Concepts

Graphics accelerators are very useful for Graphics accelerators are very useful for
single-processor renderingsingle-processor rendering
Multiple CPUs and/or multiple graphics Multiple CPUs and/or multiple graphics
adapters are a challengeadapters are a challenge

SMP geometry pipelines are difficult for many APIs
In clusters, communication often overshadows computation
and rendering
Communication overhead is often overlooked or excluded
Even "embarrassingly parallel" approaches (frame-parallel)
are not trivially implemented

Require high-speed networks and high-speed disks
Poor scaling and chance for deceleration
Solution: Increase CPU load to reduce communication

Exploiting Graphics HardwareExploiting Graphics Hardware

Hardware can shorten rendering timeHardware can shorten rendering time
Shift balance between computation & communication

Rebalance by reducing comm. overheadRebalance by reducing comm. overhead
Use more CPU, e.g. compression, selective updates, ...
Use less bandwidth, e.g. distributed frame buffers
Overlap communication and computation

G R C

R C

No HW

With
HW

G

R CRebalanced G

Communication BottleneckCommunication Bottleneck

FB 1 FB 2 FB 3 FB 4 Merge

From Parallel Renderers To Display

Avoid communication of final pixel values to a Avoid communication of final pixel values to a
central storage or displaycentral storage or display
Instead use dedicated merge hardware to Instead use dedicated merge hardware to
combine partial imagecombine partial image

Details: See Wei et al., PRS95

Distributed Frame BufferDistributed Frame Buffer

Parallel polygon rendering classificationsParallel polygon rendering classifications
Sort-first/middle/last

Key problems in parallel polygon renderingKey problems in parallel polygon rendering
Load balancing
Communication overhead

Load BalancingLoad Balancing
Required due to uneven work distribution
Static, dynamic, adaptive

Communication overheadCommunication overhead
Distribution and collection of data
Minimize transfers or support in hardware

SummarySummary

1

Course 13

Rendering and Visualization
in Parallel Environments
Rendering and VisualizationRendering and Visualization
in Parallel Environmentsin Parallel Environments

Parallel VolumeParallel Volume
RenderingRendering

Course 13

OverviewOverviewOverview

•• Volume Rendering ? (35 min)Volume Rendering ? (35 min)

•• The PVR System (20 min) The PVR System (20 min)

2

Course 13

OverviewOverviewOverview

•• What is Volume Rendering ? (35 min)What is Volume Rendering ? (35 min)

•• The PVR System (20 min) The PVR System (20 min)

Course 13

Volume RenderingVolume RenderingVolume Rendering

3

Course 13

Volume RenderingVolume RenderingVolume Rendering

Course 13

Motivation -- Motivation -- Large DataLarge Data

•• Medical DataMedical Data
• Male Visible Human (512-by-512-by-1877) 500MB CT, 14GB RGB

[Silva 96]

PVR [Silva-et-al 96]

4

Course 13

Rendering of the Visible
Male
[Silva-Pavlakos 95]

Rendering of the VisibleRendering of the Visible
MaleMale
[Silva-[Silva-Pavlakos Pavlakos 95]95]

Course 13

Motivation -- Motivation -- Large DataLarge Data

•• NASA Curvilinear and Irregular GridNASA Curvilinear and Irregular Grid dataset dataset

• Several gigabytes of hard to render data
Grid TypesGrid Types

Regular

Rectilinear Irregular

Curvilinear

Hexa-Grid
LSRC [Silva-Mitchell 97]

5

Course 13

Motivation -- Motivation -- Large DataLarge Data

•• Accelerated Strategic Computing InitiativeAccelerated Strategic Computing Initiative (ASCI) (ASCI)
• Today: ASCI Red (1.8 Tflops, 600 GB RAM)

• By year 2005, simulations with 5-10 Petabytes of data

PVR [Silva-et-al 96]

Course 13

Optical ModelsOptical ModelsOptical Models

Light

sssIssgsIxsI ∆Ω−∆+=+)()()()()(

s
s∆

dx
s

x
dyy

exgsI ∫
∫Ω−

=
0

0
)(

)()(

6

Course 13

Projected Tetrahedra
[Shirley-Tuchman 91]
Projected Projected TetrahedraTetrahedra
[Shirley-[Shirley-Tuchman Tuchman 91]91]

Class 1; (+, +, +, -)Class 1; (+, +, +, -)

Class 2; (+, +, -, -)Class 2; (+, +, -, -)

Course 13

Projected Tetrahedra
[Shirley-Tuchman 91]
Projected Projected TetrahedraTetrahedra
[Shirley-[Shirley-Tuchman Tuchman 91]91]

Class 1; (+, +, +, -)Class 1; (+, +, +, -)

Class 2; (+, +, -, -)Class 2; (+, +, -, -)

7

Course 13

Visibility OrderingVisibility OrderingVisibility Ordering

B

p

A

A < Bp

Course 13

Visibility OrderingVisibility OrderingVisibility Ordering

A

B

C

Viewing direction

1

2 3

4

5
6

7

8 9

10

11

12

13

14

15
16

17

18

19

20

21

22

23

24
25

26 27
28

8

Course 13

Meshed Polyhedra Visibility Ordering - MPVO
[Williams 92]
Meshed Polyhedra Visibility OrderingMeshed Polyhedra Visibility Ordering - - MPVOMPVO
[Williams 92][Williams 92]

A

B

C

E

D

F

Viewing direction

Idea: Define ordering relations
by looking at shared faces. B < A

A < C

B < E

C < E

C < D

E < F

D < F

Course 13

B < A

B < E

MPVO Rendering
[Williams 92]
MPVO RenderingMPVO Rendering
[Williams 92][Williams 92]

B

C

E

D

F

Viewing direction

Idea: Run a topological sort.

A

A < C

C < E

C < D

E < F

D < F
1

2 3
4

5

6

9

Course 13

MPVO LimitationsMPVO LimitationsMPVO Limitations

Viewing direction

Missing relations!

Course 13

XMPVO
[Silva-Mitchell-Williams 98]

XMPVOXMPVO
[Silva-Mitchell-Williams 98][Silva-Mitchell-Williams 98]

Viewing direction

Idea: Using ray shooting queries
 to complement ordering
 relations.

A
B

C

D

A < C
A < B
B < D

10

Course 13

BSP-XMPVO
[Comba-et-al 99]
BSP-XMPVOBSP-XMPVO
[[CombaComba-et-al 99]-et-al 99]

A

B

C
D

E
F

G

H

Viewing direction

1

3

4

5

6

7

9
10

8

11 12

Course 13

BSP-XMPVO
[Comba-et-al 99]
BSP-XMPVOBSP-XMPVO
[[CombaComba-et-al 99]-et-al 99]

A

B

C
D

E
F

G

H

Viewing direction

1

3

4

5

6

7

9
10

8

11 12

<bsp

11

Course 13

A

B

C
D

E
F

G

H

Viewing direction

1

2

3

4

5

6

7

9
10

8

11 12

Problem: G is partially
projected, but we need to
guarantee that F is projected
 after G

Solution: Keep a list of
partially projected cells,
and add an extra (third)
dependency counter

BSP-XMPVOBSP-XMPVO
[[CombaComba-et-al 99]-et-al 99]

Course 13

BSP-XMPVO relationsBSP-XMPVO relationsBSP-XMPVO relations

•• MPVO dependencies (<)MPVO dependencies (<)
• Adjacency relation given by mesh

•• BSP dependencies (<)BSP dependencies (<)
• Each fragment c’ on the boundary of C define a BSP-

dependency for cell C

•• PPC dependency (<)PPC dependency (<)
• If C’ is partially projected and C’ lies behind cell C, then

we create a PPC dependency for C

adj

bsp

ppc

12

Course 13

BSP-XMPVO algorithmBSP-XMPVO algorithmBSP-XMPVO algorithm

Course 13

Result
s
ResultResult
ss

13

Course 13

Result
s
ResultResult
ss

240,000

190,000

13,000

Course 13

Result
s
ResultResult
ss

No cells Stein Williams XMPVO FPCS MPVONC

13K 14 sec 7.2 sec 3.5 sec 0.37 sec 0.07 sec

190K 2,880 sec 162 sec 25 sec 2.5 sec 0.70 sec

240K NA 475 sec 48 sec 2.9 sec 0.90 sec

14

Course 13

OverviewOverviewOverview

•• What is Volume Rendering ? (35 min) What is Volume Rendering ? (35 min)

•• The PVR System (20 min) The PVR System (20 min)

Course 13

PVR OverviewPVR OverviewPVR Overview

Images

Requests

HPCSTCP/IP

15

Course 13

System componentsSystem componentsSystem components

pvrsh

zia.cs.sandia.gov

client.edu

pvrd.sunmos yod caster.sunmos

yod caster.sunmos

vista9.watson.ibm.com

pvrd.mpi

poe caster.mpi

Course 13

Simple interactive scriptSimple interactive scriptSimple interactive script

pvr_session :s
:s set -partsz 1,1,8
:s open2 vista9
:s set -partsz 1,1,8 /* Need to configure */
:s set -dataset neghip.slc -cluster 4 -group 0,0
:s render rotation 0,1,0 0,10:30
:s close2

16

Course 13

Pvrsh/render comm.PvrshPvrsh/render /render commcomm..

Pvr session :s

ctl img

Pvr-join

zia.cs.sandia.gov

Host Collector

yod
Single socket

Obs: On machines with real socket access to the nodes,
such as the SP-2, this is not necessary

Course 13

Node main loopNode main loopNode main loop

While(1) {

 if(Pvr_RecvAction())
 Pvr_RunAction();

 /* Some more, render specific stuff */

}

Node.c

17

Course 13

Action tableAction tableAction table

Pvr_actions.c

Pvr_Action actions[] = {
 …
 {Pvr_Token, node_token},
 {Pvr_RenderRequest, node_hnd_render_request},
 …
};

Course 13

Node_token.cNode_token.cNode_token.c

Node_token.c

node_token() {

 Pvr_RecvMessage(&token, sizeof(int), PVR_MSG_TOKEN);
}

18

Course 13

Sending a tokenSending a tokenSending a token

xxx.c

 …
 Pvr_SendAction(Pvr_Token, 5); /* 5 is a node # */
 int me = mynode();
 Pvr_SendMessage(&me, sizeof(int), PVR_MSG_TOKEN, 5);
 …
};

Course 13

Pvr Actions SummPvr Pvr Actions Actions SummSumm

•• Any node P can send an action to another node QAny node P can send an action to another node Q

•• Actions can be Actions can be asynch asynch or synch, determined by use of or synch, determined by use of ACKsACKs

•• New functionality can be added very easilyNew functionality can be added very easily

•• Machine independent by the use of an action table Machine independent by the use of an action table

•• Only Only pvrpvr_actions.c and _actions.c and pvrpvr_actions.h have to be edited_actions.h have to be edited
•• Communication inside actions can be highly optimized Communication inside actions can be highly optimized

•• This is similar to This is similar to active messagesactive messages

19

Course 13

Sort-Last CompositingSort-LastSort-Last Compositing Compositing

•• Rendering pipeline is divided into two phases:Rendering pipeline is divided into two phases:
•(1) Each processor renders its data (does not

matter whether geometric or volumetric) by
itself, possibly generating an image (or other
auxiliary data structure)

•(2) (Whole, or sub-) images are composited in a
second phase

Course 13

Rendering and Compositing in a
Sort-Last Pipeline

Data is distributed among the processorsData is distributed among the processors

20

Course 13

K-d tree revisedK-d tree revisedK-d tree revised

Course 13

BSP-treeBSP-treeBSP-tree

21

Course 13

Parallel BSP-treeParallel BSP-treeParallel BSP-tree

BSP-tree compositing tree

Course 13

Parallel BSP-treeParallel BSP-treeParallel BSP-tree

•• (1) Given a data partition, the BSP-tree specifies how to put(1) Given a data partition, the BSP-tree specifies how to put

•• the images back togetherthe images back together

•• (2) [Ma-et-al 93] provides a technique for executing the BSP(2) [Ma-et-al 93] provides a technique for executing the BSP
•• (actually K-d tree) in parallel by performing image splits(actually K-d tree) in parallel by performing image splits

•• (3) (3) CompositingCompositing two images does not take the same two images does not take the same
processing power as rendering; and it also is a highlyprocessing power as rendering; and it also is a highly
synchronized operationsynchronized operation

22

Course 13

Rendering and Compositing in a
Sort-Last Pipeline

CompositingCompositing Cluster (CC) Cluster (CC)

Rendering Cluster (RC)Rendering Cluster (RC)

Course 13

Alternative Arch.Alternative Arch.Alternative Arch.

Rendering cluster

Compositing cluster

Sub-images

Main question: How to minimize the number of compositing nodes ?

23

Course 13

Parallel BSP-tree CompositingParallel BSP-treeParallel BSP-tree Compositing Compositing

BSP-tree compositing tree

CCCC

RCRC

Course 13

How to compute the number of
compositing nodes ?
How to compute the number ofHow to compute the number of
compositingcompositing nodes ? nodes ?

Rendering cluster

Compositing cluster

Sub-images

24

Course 13

Virtual CompositingVirtual Virtual CompositingCompositing

virtual compositing tree

actual compositing tree

BSP-tree compiler

Need to specify frame-rate!

Course 13

Partition AlgorithmPartition AlgorithmPartition Algorithm

•• Simple (“greedy”) bottom-up allocationSimple (“greedy”) bottom-up allocation
technique. In essence, keep merging technique. In essence, keep merging subtreessubtrees
until budget has been reacheduntil budget has been reached

•• Linear-time algorithmLinear-time algorithm

•• Shown to be optimal (see SUNY-Stony BrookShown to be optimal (see SUNY-Stony Brook
AMS Tech Report for complete details)AMS Tech Report for complete details)

25

Course 13

3

1 1

Course 13

1 1

33

1 1

26

Course 13

1 1

33

1 1

1

Course 13

1 1

3
1 1

33

1 1

1

27

Course 13

1 1

3
1 1

33

1 1

1

1

2
1

Course 13

1 1

3
1 1

33

1 1

1

1

2
1

2

28

Course 13

3

1 1 1 1

3

1 1

1
3

1
2

2
1

2

Course 13

Rendering_node.c

 …
 For each (viewpoint v)

ComputeImage(v);
p = WaitForToken();
SendImage(p);

 ...

Compositing_node.c

 …
 For each (viewpoint v)

CompositeImages(v)
p = WaitForToken();
SendImage(p);

 ...

29

Course 13

Parallel BSP-tree CompositingParallel BSP-treeParallel BSP-tree Compositing Compositing

Course 13

Parallel BSP-tree CompositingParallel BSP-treeParallel BSP-tree Compositing Compositing

1

1

1

1 1

30

Course 13

Parallel BSP-tree CompositingParallel BSP-treeParallel BSP-tree Compositing Compositing

1

1

1

1 1
2 2 2 2

2

Course 13

Parallel BSP-tree CompositingParallel BSP-treeParallel BSP-tree Compositing Compositing

1

1

1

1 1
32 2 2 2 3 3 3

2

31

Course 13

Parallel BSP-tree CompositingParallel BSP-treeParallel BSP-tree Compositing Compositing

1

1

1

1 1
32 2 2 2 3 3 3

4

4 4 4 4

2

Course 13

Rendering_node.c

 …
 For each (viewpoint v)

ComputeImage(v);
p = WaitForToken();
SendImage(p);

 ...

Compositing_node.c

 …
 For each (viewpoint v)

CompositeImages(v)
p = WaitForToken();
SendImage(p);

 ...

CompositeImages(v) is an efficient
asynchronous compositing

 procedure detailed in the paper!

32

Course 13

Experimental ResultsExperimental ResultsExperimental Results

•• Intel Paragon at Intel Paragon at Sandia Sandia National LabsNational Labs

•• Composite performed on 250-by-250 images, eachComposite performed on 250-by-250 images, each
operation took 0.22 secondsoperation took 0.22 seconds

•• Using 127 Using 127 compositing compositing nodes to composite 128 images,nodes to composite 128 images,
could be done at 4 frames/sec in the fully pipelinedcould be done at 4 frames/sec in the fully pipelined
system, close to linear speedupsystem, close to linear speedup

•• Table 1 (on paper) shows graceful degradation withTable 1 (on paper) shows graceful degradation with
increasing K for each increasing K for each compositing compositing nodes (close to linearnodes (close to linear
behavior on K too)behavior on K too)

Course 13

PVR SummaryPVR SummaryPVR Summary

• Runs under Intel NX and MPI
• Tcl-based command language
• Tk/Tcl GUI front-end
• Supports image-space, object-space, and time-space parallelism
• Volume Rendering (currently only regular grids)
• Polygon Rendering (using Mesa)
• General compositing model for sort-last architectures
• Over 20K lines of C code (not including GUI)

33

Course 13

Things to remember about PVRThings to remember about PVRThings to remember about PVR

•• Easy to extend, simple SIMD-like model Easy to extend, simple SIMD-like model

•• Provides a flexible, and general Provides a flexible, and general compositingcompositing
paradigmparadigm

•• Free, including source code. Try it out! Free, including source code. Try it out!

•• Exercise: Exercise: Add polygon rendering by yourself Add polygon rendering by yourself

Course 13

Future WorkFuture WorkFuture Work

•• Computational Steering Computational Steering

•• Irregular Grids Irregular Grids

•• Robustness Robustness

•• Polygonal Load Balancing Polygonal Load Balancing

•• Parallel I/O Parallel I/O

•• Time-varying Data (better support) Time-varying Data (better support)

34

Course 13

AcknowledgmentsAcknowledgmentsAcknowledgments

•• M. Fan M. Fan LokLok

•• A.A. Kaufman Kaufman, C. J. , C. J. PavlakosPavlakos, C. R. , C. R. RamakhrisnanRamakhrisnan,,
•• and B. and B. WylieWylie
•• Sandia Sandia National Labs National Labs
•• National Science Foundation, National Science Foundation,
•• CNPq CNPq--BrasilBrasil

