
ICCA'04 127

Optimization of Java Graphical Applications in PDAs

Nuno Faria

Departamento de Informática, Universidade do Minho
 4710 – 057 Braga, Portugal

cei7160@di.uminho.pt

Abstract. This work aims to show the performance evolution of a JAVA graphical
application (a SVG file viewer). The critical parts of the application, mainly at the processor
level, are analysed, through the use of a JAVA profiler. The impact of different optimization
techniques on the application performance is shown. A performance comparison between the
application of the most effective techniques and the initial code is presented.

1 Introduction

Current PDAs are limited at memory, processor, screen area and even with peripherals. The
PDAs processors are most turned on to low power optimization and wireless communications
than the speed performance (400MHz maximum speed). So, it is necessary (or at least wise) to
build applications that not take lots of the available resources (that the concerning about
memory and processor must be take in to account).
 The application used to show the optimization techniques is a file viewer [1], based on
a XML subset to generate 2D graphics (SVG, Scalable Vector Graphics) and which was
developed in JAVA. This application, and like others graphical applications, needs to have a
visualization area where the graphical elements are displayed. And because is a vectorial
element based application, when applying transformations, all elements are calculated to new
positions with no lost of image quality (this require some processing time).

The application contains the following modules:
• a SVG loader, which will parse the SVG files (the Crimson XML parser from

Apache);
• a data structure, to save and access all the graphical elements parsed before;
• the visualization area, to display the graphical elements;
• the transformation module, where image operations like pan, rotation and zoom are

available.
 The test environment was based on a PC platform with a Pentium III – 1000MHz
processor, 512 MB of RAM, WindowsXP Professional, JProfiler v2.4.1 and Java
Development Kit v1.1.8.
 Next chapter discusses issues related to performance behaviour, critical parts of the
application and optimization techniques. Chapter 3 presents the most significant results of
applying the techniques described in chapter 2 and how and what to measure in applications.
Finally, the conclusions are presented.

128 ICCA'04

2 Analysing the Performance Behaviour
Since the application is built in JAVA (also limited below to JAVA2 technology) and,
consequently, cannot use assembly code, the optimizations that are suggested will be at a data
structure level (faster and/or that takes less memory) and at iterative cycles.

2.1 Profiling an Application
In order to find out the critical parts of application performance, it was used the JProfiler tools,
which allows analysing the life cycle of the application and seeing what are the
methods/variables that take more resources. After the first result appears, the application was
divided in two important stages to optimize: loading a file and applying visual
transformations.
 Next, the results of the most critical methods/variables used by the application are
showed.

Results.
Memory instances/used (while loading a file):

• char[];
• String;
• Vector;
• int[];
• float[].

Processor occupation (while loading a file):
• elements().

Memory instances/used (while applying transformations):
• int[];
• draw shape methods.

Processor occupation (Wwhile applying transformations):
• draw shape methods;
• setColor();
• elementAt();
• ComputeXY().

2.2 Optimization Techniques
There are several techniques to apply in order to optimize the code of an application [2]. These
can be split in two fundamental stages: machine independent, where the optimizations will be
at programming language in general, and machine dependent, where the optimizations will
concern about operating system, processor and memory.

2.2.1 Machine Independent
The first step, in general, to optimize the JAVA code of an application is to take a look in to
the code to find out if there is any possibility to replace some variables, methods, cycles and
data structures with others more efficient.

ICCA'04 129

 Let us take a look to the code of the method elements (used to transform a SVG node
in a graphical element) of the SVG Viewer and make changes to exemplify some optimization
techniques.

public static void elements(Node nd, Scene scene) {
 if ((nd.getNodeName()).equals("svg")) {
 OsvSVG svg = Parser.svg(nd);
 if (svg.hasViewbox()) {
 scene.translate(-svg.getViewboxX(), -svg.getViewboxY());
 scene.scale((int)svg.getX(),(int)svg.getY(),
 (svg.getWidth()/svg.getViewboxWidth()));
 }
 Node child = nd.getFirstChild();
 while(child!=null){
 Parser.elements(child,scene);
 child = child.getNextSibling();
 }
 }
 (…)
 if ((nd.getNodeName()).equals("polyline")) {
 try {
 Polyline pl = Parser.polyline(nd);
 scene.addNode(pl);
 } catch (OutOfMemoryError er){
 System.out.println("Erro de memoria ao criar objecto num:: ?");
 System.exit(0);
 }
 }
 if ((nd.getNodeName()).equals("desc")) {
 Node child = nd.getFirstChild();
 scene.setDesc(child.getNodeValue().trim());
 } else
 scene.setDesc("Description not available");
 (…)
}

Fig. 1. Java code of elements method.

Avoid Method Call Inside Loops.
Observe that method nd.getNodeName(), in Fig 1, is called several times as a test condition to
create different elements and never changes during the method. When this occurs is more
efficient declare a string with the nd.getNodeName() value and test that string because that
method will be called only once (Fig. 2). The same can be applied to methods
att.getNodeName() and att.getNodeValue() , as shown below in Fig. 4.

 public static void elements(Node nd, Scene scene) {
 String t_elem = nd.getNodeName();
 if (t_elem.equals("svg")) {
 (…)
 }
 (…)
 if (t_elem.equals("polyline")) {
 (…)
 }
 if (t_elem.equals("desc")) {
 (…)
 }
 (…)
 }

Fig. 2. Java code of elements method with optimizations.

130 ICCA'04

Eliminate Loop Inefficiencies.
First thing to say about loops in JAVA is that it is better to use for than while, because for
allows to declare a variable that will be used just in the loop body and then destroyed when
leaves the loop, while using while a test variable has to be declared before the loop and could
be used, by mistake, later and could be in memory for a long time.

public static void elements(Node nd, Scene scene) {
 if ((nd.getNodeName()).equals("svg")) {
 OsvSVG svg = Parser.svg(nd);
 if (svg.hasViewbox()) {
 scene.translate(-svg.getViewboxX(), -svg.getViewboxY());
 scene.scale((int)svg.getX(),(int)svg.getY(),
 (svg.getWidth()/svg.getViewboxWidth()));
 }
 for (Node child = nd.getFirstChild(); child != null;
 child = child.getNextSibling())
 Parser.elements(child,scene);
 }
 (…)
}

Fig. 3. Java code of elements method with optimizations.

 Now let us look at next figure that is the code of method polyline (that is used in
elements to create a polyline).

 public static Gpolyline polyline(Node node) {
 GPolyline obj = new Gpolyline();
 NamedNodeMap attributes = node.getAttributes();
 for (int i=0; i< attributes.getLength(); i++) {
 Node att = attributes.item(i);
 String name = att.getNodeName();
 String value = att.getNodeValue();
 if (name.equals(“points”)) {
 String sep = new String(“, “);
 Vector cords = new Vector();
 StringTokenizer st = new StringTokenizer(value, sep);
 while (st.hasMoreTokens()){
 String cord = new String(st.nextToken());
 cords.addElement(cord);
 }
 obj.np = cords.size()/2;
 obj.px = new float[cords.size()/2];
 obj.py = new float[cords.size()/2];
 for (int j=0; j<cords.size(); j++){
 String cxy = new String((String)cords.elementAt(j));
 obj.str2pts(cxy, j);
 }
 } else if (name.equals(“stroke”)) {
 String stroke = new String(value);
 obj.setStrokeColor(stroke);
 } else if (name.equals(“fill”)) {
 String fill = new String(value);
 obj.setFillColor(fill);
 } else if (name.equals(“style”)) {
 String style = new String(value);
 Parser.setStyle(obj, style);
 }
 }
 obj.compile();
 return obj;
 }

Fig. 4. Java code of polyline method.

ICCA'04 131

 Observe that methods attributes.getLength() and cords.size() are called as test
conditions of the for loops. Because the lengths of string attributes and vector cords do not
changes as the loop proceeds, we could compute that sizes only once.

public static Gpolyline polyline(Node node) {
 GPolyline obj = new Gpolyline();
 NamedNodeMap attributes = node.getAttributes();
 int atlen = attributes.getLength();
 for (int i=0; i<atlen; i++) {
 (…)
 obj.np = coords.size()/2;
 obj.px = new float[obj.np];
 obj.py = new float[obj.np];
 for (int j=0; j<(obj.np*2); j++){
 String cxy = new String((String)cords.elementAt(j));
 obj.str2pts(cxy, j);
 }
 (…)
}

Fig. 5. Java code of polyline method with optimizations.

Avoid New Object Creations.
As we can see in Fig. 4., every time the method polyline needs to send a string to other
methods, a new instance of string is created. Sometimes it is not necessary to do that and, that
way, avoid the process of creating objects.

 public static GPolyline polyline(Node node) {
 GPolyline obj = new GPolyline();
 NamedNodeMap attributes = node.getAttributes();
 int atlen = attributes.getLength();
 for (int i=0; i<atlen; i++) {
 Node att = attributes.item(i);
 String name = att.getNodeName();
 String value = att.getNodeValue();
 if (name.equals("points")) {
 Vector coords = new Vector();
 StringTokenizer st = new StringTokenizer(value, ", ");
 while (st.hasMoreTokens())
 coords.addElement(st.nextToken());
 obj.np = coords.size()/2;
 obj.px = new float[obj.np];
 obj.py = new float[obj.np];
 for (int j=0; j<(obj.np*2); j++)
 obj.str2pts((String)coords.elementAt(j), j);
 } else if (name.equals("stroke")) {
 obj.setStrokeColor(value);
 } else if (name.equals("fill")) {
 obj.setFillColor(value);
 } else if (name.equals("style")) {
 Parser.setStyle(obj, value);
 }
 }
 obj.compile();
 return obj;
 }

Fig. 6. Java code of polyline method with optimizations.

132 ICCA'04

Use Basic Data Structures.
Every time that the number of objects to save is known, we should use arrays instead Vector,
HashTable and other dynamic data structures. Due to its dynamism, some data structures
require processing time to increase or decrease its capacity.

2.2.2 Machine Dependent
Some programming languages, like C, allow the programmer to code at very low level using
assembly. This feature allows programming and taking control of some operations and
functions at processor and memory level, which can be faster than functions used by native
languages. It is possible to write code to a specific platform to explore all its capacities.
 But with JAVA this is not possible. JAVA is a high level platform independent
language and is the JAVA Virtual Machine (JVM) that converts this bytecode to a native
binary code.

3 Experimental Results
The experimental results of applying the above techniques were based on the time that SVG
Viewer takes to load a file and transform an image. Those tests were made in three different
machines, with different processors and memory using time-of-day measurements.

What to Measure?
To provide great precision of measuring, many processors contain a timer that operates at the
clock cycle level, a clock cycle counter. A special register IS incremented every clock cycle
and can be accessed by specific machine instructions. But not all processors (including PDAs
processors) have such counters. As a result, there is no uniform, platform-independent
interface by which programmers can make use of these counters. It is possible to create a
small program interface for any specific machine using assembly to perform this task, but
while using JAVA it would be impossible.
 A simpler way to measure the execution time of a program is to query the system clock
and register the time that the program execution takes from the beginning to the end; this is
called time-of-day measurement. The JAVA method System.currentTimeMillis() returns the
difference, measured in milliseconds, between the current time and midnight, January 1, 1970
UTC and lets programmers know the time taken by a given method to execute.

long start = System.currentTimeMillis();

//method to measure

long end = System.currentTimeMillis();
double tot = (end - start)/1000.0; //In seconds
System.out.println("\nTime past in seconds : " + tot);

Fig. 7. Java code to get the system time in milliseconds.

ICCA'04 133

 This is a very portable solution (just the system clock, common in all systems, is used)
but its accuracy depends on how the clock is implemented and this varies from system to
system. This variation occurs, because some operating systems (like Linux) use cycle counters
to implement its time function, while others (like Windows) use interval counting to
implement the same function. In theory, this kind of measurement under Windows produces
low accuracy, especially for short duration (time intervals shorter than 200ms), but the
available examples require longer execution times.

How to Present Results?
The measurements were made with several different size SVG files in three different systems:
a Pentium III 1000MHz with 512MB of RAM under Windows XP Professional; an AMD K6-
2 400MHz with 384MB of RAM under Windows XP Professional; and in a Pocket LOOX
600 Fujitsu/Siemens 400MHz processor under Windows PocketPC 2002. The application was
compiled with jdk1.1.8.
 Fig. 8. shows the difference between the time that SVG Viewer takes to load a file
before and after the optimization techniques1.

Loading a File

0
1
2
3

4
5
6

Circ
les

.sv
g
(1
K)

Lio
n.
sv

g
(2
1K

)

Ki
mon

o.s
vg

 (4
2K

)

Av
r1
.sv

g
(1
18

K)

Av
r4
.sv

g
(9
22

K)

Av
r2
.sv

g(
1.
52

M
B)

File Size

Se
co

nd
s

PIII - 1000MHz

PIII - 1000MHz Opt

Fig. 8. Differences of performance in a PIII processor.

Loading a file

0
2
4
6
8

10
12

Circ
les

.sv
g
(1

K)

Li
on

.sv
g (

21
K)

Ki
mon

o.s
vg

 (4
2K

)

Av
r1

.sv
g (

11
8K

)

Av
r4
.sv

g (
92

2K
)

Av
r2

.sv
g(

1.5
2M

B)

File Size

Se
co

nd
s AMD K6-2

400MHz
AMD K6-2
400MHz Opt

Fig. 9. Differences of performance in an AMD processor.

1 For further detail insight this work, including code listings, see http://gec.di.uminho.pt/micei/ac0304/icca04/w3-pda.zip or
see the entire project in http://opensvgviewer.sourceforge.net/home.php

134 ICCA'04

Loading a File

0
10
20
30
40
50
60

Circ
les

.sv
g (

1K
)

Lio
n.s

vg
 (2

1K
)

Kim
on

o.s
vg

 (4
2K)

Avr
1.s

vg
 (1

18
K)

Avr
4.s

vg
 (9

22
K)

File Size

Se
co

nd
s

Pocket LOOX

Pocket LOOX Opt

Fig. 10. Differences of performance in a PDA Intel 400MHz processor.

4 Conclusions

As a final conclusion, it is easy to notice (see the figures) that the optimization techniques
applied to the initial code improves the application efficiently in different platforms. Using
only machine independent techniques the application takes almost less 50% to load a file with
time-of-day measurements, namely with larger files. Some of these techniques were applied to
transformation functions, in the application, but the results were not faint. However, it is
possible to conclude that parts of application may still need further optimizations, namely
machine dependent ones.
 Due to the limitations of JAVA at low level code, it was not possible to know at what
point machine dependent techniques would affect the application performance. Which I guess
it would be very high.

References

[1] Faria, Nuno André S.: Relatório de Estágio – Visualizador de Mapas para PDAs em SVG,

Departamento de Informática - Universidade do Minho, 2002.
[2] Bryant, Randal E., O’Hallaron, David R.: Computer Systems A Programmer’s Perspective,

Prentice Hall, 2002.

