
ICCA'04  121 

Cache Impact on Image Processing Performance 
 

Tiago Chaves Bezerra 
 

Departamento de Informática, Universidade do Minho 
4710 - 057 Braga, Portugal 

mi7300@mestrado.di.uminho.pt 
 

 
Abstract. This communication analyses a non-linear relationship between the processing time 
and the size of an image. Research methodologies were applied to explain this behaviour, such 
as verifying the “memory mountain”, debugging the code and using a cache profiling tool. The 
main cause of this non-linear behaviour is shown to be the merge of the cache size, their 
associate degree and the image location address. 

 

1      Introduction 
High performance has always been a concern in several computer areas. In the domain of 
image processing, where the time needed to analyse an image may be high, it is possible to 
make some optimizations to obtain improved processing times. However, some 
optimization techniques may depend on the configuration of the hardware elements, and it 
may not be easy to achieve the application’s best performance.  

With this goal, this communication will discuss one of the several situations where an 
application code may present a performance anomaly due to the cache organization. A 
specific case study of image processing was used to understand the cache hierarchy and 
apply the knowledge to avoid such undesirable behaviour. The case under study is an 
image processing algorithm that converts images from a 256 grey scale to 2 colours (black 
and white). 

A reported problem occurs when the size of the image grows: the time to process it did 
not always grow proportionally with the size, with periodic glitches. This periodic 
behaviour suggests that the cause could lie in the cache hierarchy.  

To study this particular case, it was followed the methodology described below. The 
first step is to verify the problem reported by executing the algorithm in other computers 
with other environments. After recognizing the problem, it is necessary to inspect the 
problem, verifying the code implemented. The third step is to make an analysis about the 
situation, looking for similar problems and causes. The fourth step is to explain the 
reported problem with a scientific foundation. Once the problem and its causes are 
identified, try to adjust the code to solve it, without modifying the algorithm.  

This communication has the following structure: Section 2 - Basic concepts, a review of 
concepts required to understand the problem; Section 3 – The image processing problem, a 
description of the problem and the beginning of the code inspection; Section 4 – Analysis 
of the cache impact, which shows the data structures and the cache performance; Section 5 
– A possible explanation, presenting a possible explanation of the problem; Section 6 – 
Conclusion, closes the communication by reporting some interesting aspects of the case 
study. 

2      Basic Concepts 
This section presents some concepts related to memory hierarchy, namely memory cache, 
to better understand the problem to be analysed. 
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2.1     The Memory Hierarchy 
To obtain a better relation of cost, capacities and performance, the memory system is a 
hierarchy of storage devices with different capacities, costs, and access times.  

The registers, in the CPU, are the faster memory and hold the most frequently used data, 
but is also must expensive memory, that’s the motive of only have a few of them in the 
CPU. After the register there are a subset of memories, small, fast cache memories near the 
CPU act as staging areas for a subset of the data and instructions stored in the relatively 
slow main memory. The main memory stages data stored on large, slow disks, which in 
turn often serve as staging areas for data stored on the disks or tapes of other machines 
connected by networks.  

Memory hierarchies work because programs tend to access the storage at any particular 
level more frequently than they access the storage at the next lower level. So the storage at 
the next level can be slower, and thus larger and cheaper per bit. The overall effect is a 
large pool of memory that costs as much as the cheap storage near the bottom of the 
hierarchy, but that serves data to programs at the rate of the fast storage near the top of the 
hierarchy. 

This structure may produce a variance of the access time by factors of ten, or one 
hundred, or even one million, and that may result on significant and inexplicable 
performance slowdowns in programs execution [1].  

2.2     Cache Memory 
In general, a cache is a small, fast storage device that acts as a temporary area for data 
objects, which was recently requested (principle of locality [1]), stored in a larger, slower 
device.  

But, as know the cache near the CPU is small, it is necessary a technique of 
replacement. There are three possibilities:  

- direct mapped: a specific block can only go in one place in the cache, usually, at 
address MOD number of blocks in cache; 

- fully associative: a specific block can go anywhere in cache; 
- set associative: a specific block can go in one of a set of places in the cache. 

A set is a group of blocks in the cache. In a set associative cache, a block is first 
mapped to a specific set by using block address MOD number of sets in the cache, after 
that the block may then be placed anywhere in that set. If sets have n blocks, the cache is 
said to be n-way set associative. 

When a block is requested and there is no place to put it in the cache, it is necessary a 
replacement rule. This only applies to fully associative and set associative caches. For 
direct mapped, each block can only be placed in one location. The replacement rules can 
be: 

- random: choose a block from the set at random; 
- LRU: choose the least- recently used block; this approach has been unused for the 

longest time; it requires extra bits in the cache to keep track of accesses, it turns out 
that LRU is not much better than random replacement. 

About the cache it is also important to know some measurement, which allows to verify 
a good use of the cache: 

- cache hit: occurs when a particular data object is requested from a level k to a level 
k + 1, and the level k + 1 has the object data to respond; 

- cache miss: occurs when a particular data object is requested from a level k, and the 
level k+1 has not the object data, needing to request to a higher level on the 
hierarchy (k + 1+ n), where n >= 1 . 

The cache performance is evaluated with a number of metrics [1]: 
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- miss rate: the fraction of memory references during the execution of a program, or 
a part of a program, that misses. It is computed as number of misses / number of 
references ; 

- hit rate: the fraction of memory references that hit. It is computed as 1 - miss rate . 
- Hit time: the time to deliver a word in the cache to the CPU, including the time for 

set selection, line identification, and word selection. Hit time is typically 1 to 2 
clock cycle for L1 caches.  

- miss penalty: any additional time required because of a miss. The penalty for L1 
misses served from L2 is typically 5 to 10 cycles. The penalty for L1 misses served 
from main memory is typically 25 to 100 cycles [1]. 

There are reasons for a cache miss, known as the three C [2]: 
- compulsory: the first access to a block cannot be in the cache, so there must be a 

compulsory miss;  
- capacity: if the cache is too small to hold all of the blocks needed during execution 

of a program, misses occur on blocks that were discarded earlier. In other words, 
this is the difference between the compulsory miss rate and the miss rate of a finite 
size fully associative cache; 

- conflict: if the cache has sufficient space for the data, but the block cannot be kept 
because the set is full, a conflict miss will occur. This is the difference between the 
miss rate of a non- fully associative cache and a fully- associative cache. These 
misses are also called collision or interference misses. 

A special case of conflict miss is the trashing, it is the situation where a cache is 
repeatedly loading and evicting the same sets of cache blocks. There are many types of 
optimizations, some of that are, try to reduce cache misses, increase cache hit and predict 
future request of data, putting it before be asked into the cache. 

About the write policy, this determines what happens when a block is written to the 
cache, and when the write is communicated to the lower level (main memory): 

- write-through: in this scheme, the block is written both to the cache and main 
memory. 

- write back (also copy back): in this scheme, only the block in cache is modified; 
main memory is modified when the block must be replaced in the cache; this 
requires the use of a dirty bit to keep track of which blocks have been modified.  

 

3      The Image Processing Problem 
Several tests were performed with the algorithm, modifying the images sizes (in pixel), 
from 64x64 pixels up to 4096x4096 pixels, every 64 pixels, on each axis (i.e. 64x64, 
64x128, … 64x4096, 128x64, … 4096x64, 4096x128, …). 

The tests were run on two computers: Mickey - Intel Centrino at 1.6 GHz, 512MB of 
RAM, 32KB data cache on L1 and 1MB unified cache on L2 - and Alfa - Intel Pentium 4 
at 2.6 GHz, 1GB of RAM, 8KB data cache on L1 and 512KB unified cache on L2 [3]. 

As shown in the graph bellow, it is possible to see some peaks according to the image 
size. The two computers showed similar results after several execution of the algorithm. 
This behaviour was unexpected, once the most logic was a constant growing up time, this 
is the question here placed.  
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Processing Time of Square Images
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Figure 1: Result of the time spent to process different image sizes on Alfa 

 

3.1     Code Inspection 
The code was inspected aiming to find the code portion whose processing execution time 
was longer with a 1024x2024 pixels image than with a 1026x1026 pixels image. That part 
of the code would be responsible for the peak showed before. To inspect the code Linux 
tools were used, such as gdump, ddd, kcachegrind-0.3b. These are debugging and profiling 
utilities. The code was disassembled to better analyse its behaviour. The entire assembly 
code is on Appendix B of the full report1. 

Table 1: Cost taken to process the functions in images with different sizes, percent of 
the entire processes cost. Extracted from kcachegrind-0.3b, report 

Function / size of the image 1024x1024 pixels 1026x1026 pixels 
bina() 99,27% 99,25% 
getXY() 45,85% 43,60% 

 
The table shows that the bigger cost spent on the functions bina and getXY are inversely 

proportional to the image size. The function bina is the function that decides if the pixel 
will go black or white. The function getXY is called inside the function bina, which is the 
function that returns the value of the pixel in the coordinate x, y.  

The code implements the algorithm that transforms grey images in black and white 
images using a window median limit [4]. The principal part of the bina code function is 
showed bellow. The entire code is in Appendix A of the full report2. 
 
                                                 
1 Available in http://gec.di.uminho.pt/micei/ac0304/icca04/proc/w2-vision.zip 
2 Available in http://gec.di.uminho.pt/micei/ac0304/icca04/proc/w2-vision.zip 
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... 
/* Loop Y*/ 
for (y=sob; y<pAltura-sob; y++){ 

// Loop X 
for (x=sob; x<pLargura-sob; x++){  
      // put the pixel at Black or White 
      if (getXY(x,y)>200){ 
  setXY(x,y,255); 
      }else{  
       if ( getXY(x,y) >= media - K*desvio) 

    setXY(x,y,0); 
        else 

    setXY(x,y,255); 
  }// end if 
 }// end for x 
}// end for y 
... 

 
This part of the code represents two inner loops that make a verification of each element 

value, by testing if it will be black or white. 

3.2     Analysis of the Cache Impact 
The research has converged into two situations: the impact of caches on program 
performance and the effects of array size in cache performance. Similar problems were 
found with different computers [2].  

The first theme is about a study of the cache hierarch and an evaluation of the time 
taken to get object data on the different cache level. As proposed by the authors of [1], the 
result obtained after run the application mountain.c, on Mickey computer is showed below.  
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Figure 2: The memory mountain of Mickey 

 
The second is a study cache misses. Conflict misses are common in real programs and 

can cause baffling performance problems. Conflict misses in direct-mapped caches 
typically occur when programs access arrays whose sizes are a power of two. To verify 
more precisely if the problem reported is really a problem about rate miss in different level 
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of cache, it was necessary to exam the cache hit and misses in the application runtime. To 
this it was used the Kcachegrind-0.3b. It is an application that can show the process time, 
memories and cache uses. 

The graph bellow shows the cache miss rate on the two levels, L1 and L2. Complete 
results are in Appendix D of the full report3. 

 Figure 3: Graph of cache misses of the execution with specific images width 

 

3.3     The Explanation 
As already described in the basic concepts section, the cache may optimize the process 
time. But, it is still a question about the peaks of processing time for some image sizes. The 
response is a relation between the cache size, its associative degree and the address of the 
memory allocated for the image data. In order to demonstrate the problem, an 
exemplification is necessary.  

Imagine two images, inImage and outImage, represented by two consecutives arrays in 
the memory. The algorithm is simple; just sum a constant value to the elements of the first 
array, putting it on the second array at the same position. To do that, the Alfa computer 
was used: previously described, with 8KB L1 data cache (4-way set associative) and L1 
instruction cache for 12K µops, 512KB L2 cache (8-way set associative), with 1024 sets of 
8 data lines in L1 and xxx sets of 8 lines in L2. Usually, to map a block onto a set, the 
block Address MOD Number of sets equation is used. 

With image sizes up to 512x512 pixels everything works fine since both images fit into 
L2 cache. Once they are initialized, they may stay there for the whole executing time. 

However, it works differently for image sizes having 1024 or 2048 pixels. The array 
data are not only concurring for a cache space, but correspondent elements are also 
concurring to the same set. The description step by step is (if implements write-back):  
                                                 
3 Available in http://gec.di.uminho.pt/micei/ac0304/icca04/proc/w2-vision.zip 

Caches Misses

0
10
20
30
40
50
60
70
80
90

100

96
0

10
24

10
88

19
84

20
48

21
22

30
08

30
72

31
36

Image width

M
is

se
s 

(%
)

L2 misses (% of Total
access number)

L2 data misses(% of L2
access number)

Faltas Dados + Inst. em
L2 data and Inst. Misses
(% of L2 access
number)



ICCA'04  127 

 1) Load a block from inImage 
   1a) Cache misses in L1 cache: block needs to be caught  
  1b) L1 cache line must be replaced, it may be a line with outImage block 
  1c) Write back dirty cache line to L2 cache [out] 
  1d) Go to L2 cache, cache miss there as well, block still need to be caught 
  1e) L2 cache line must be replaced, it may be a line with outImage block  
  1f) Write the dirty L2 cache line back to memory [out] 
  1g) Read 128-byte, L2 cache line from inImage, into L2 cache. 
  1h) Read the appropriate quarter (32 bytes) into L1 cache. 
  1i) Complete the read of one byte. 
 2) Do the computation (a few clock cycles). 
 3) Do the store of one byte to outImage 

 3a) Cache misses in L1 cache (since inImage is there) 
  3b) Go to L2 cache, cache miss there as well 
  3c) Read, 128-byte L2 cache line from outImage, into L2 cache. 
  3d) Read the appropriate quarter (32 bytes) into L1 cache. 
  3e) Do the store byte. 

Then, do all this again for the next byte. 
As may be perceived, the element to be read and the element to write are directly 

mapped in the same set. So the outImage entry (most of the time) may have just replaced 
the inImage entry, so there is constant thrashing. Therefore, in the worst case, each byte in 
the input array causes two 128-byte reads from memory, and one 128-byte write-back to 
memory. If the block size is smaller than 128 bytes, it also prevents a cache hit. 

For the other sizes, there are still cache misses (since the two 512KB arrays do not fit 
into the 512KB cache together), but the caches work as intended, i.e., at least get to read 
128 bytes of inImage (with one memory read) and write 128 bytes to outImage (with one 
128-byte read, and later a 128-byte write-back). 

The figure bellow shows different blocks of memory, requested by the CPU, concurring 
to the same space on the lower cache memory level 
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Figure 4: Blocks mapping between different memory levels 
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4      Conclusions 
To obtain higher performance an adequate use of cache hierarchy has always been a good 
technique. However, these techniques may generate unexpected results. This particular 
case study shows an unexpected behaviour with interesting image sizes. The time taken to 
process some images was significantly higher than the time taken to process other larger 
images.  

According to the research made, the most possible cause of the problem is a coincidence 
of hardware memory cache sizes, their associative degree and the address of the allocated 
array elements. This is a peculiar example of cache misses conflict. This behaviour was 
more significant due to the number of cycles necessary to process the entire image. One 
easy solution is to place some blocks of bytes at the end of each array. 

There are several ways to improve performance, but not all of them are the best 
technique for all the problems. Even wise programmers may not understand all impacts of 
a memory hierarchy. It is relatively simple to produce efficient programs with fast average 
memory access times, but it is harder to understand why expected behaviours happen or 
not.  
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