

ICCA'04 115

Optimizing CPU Performance: Image Creation in
Computer Graphics

Carlos Manuel Ferreira Silva
Manuel António Machado Carvalho

Departamento de Informática, Universidade do Minho

4710 – 057 Braga, Portugal
mi7007@di.uminho.pt
cei7075@ di.uminho.pt

Abstract. This work aimed to explore techniques to reduce the execution time of the creation of an
image in a single-processor computer, using ray tracing software (PIRT 1.0). Applying a profiler to
the source code (in C), the main bottlenecks were identified, machine-independent optimization
techniques were applied to the longer functions – namely function inline and assembly inline – and
the obtained results were analysed.

1 Introduction
The case study is PIRT 1.0. In a very simple way, program reads a file with a
representation of a scene with objects, trace light ray on these objects, verify where the
light ray intercepts object, verifies possible reflections of the ray on the part of object
intercepted and construct an image file (type TARGA) where are recorded the image of the
process of rendering. [1] [2]

2 Optimizations
Speed is the first thought which comes to mind if one thinks of optimizing. Everyone
thinks speed and only few are left talking about disk-space and memory requirements, no
doubt they all together make a well optimized program but unlike in DOS days - when
640K of memory was the matter of concern. Today processor time is coming out to be the
scarcest resource. However, that is the case of PC programming, in case of embedded
systems, memory and code size come out as important issues.

Optimizations are usually small modifications saving a few micro seconds only but
these savings are magnified and made apparent when the optimized code fragment is used
multiple times like in a loop or in a function called multiple times.

3 Optimizations Techniques

3.1 Using an Editor and Compiler
Some compilers can generate code for common tasks saving to the programmer a lot of
effort. They can optimize the generated executables for speed and/or size usually one at the
cost of other. For example in Microsoft Visual C++, it is possible to choose optimized
executables either for speed or for size. When optimizing for size, the compiler chooses the
smallest code sequence possible and when optimizing for speed, compiler chooses the
fastest sequence. [3] [4]

116 ICCA'04

3.2 Faster Cycles
Iteration is a very common element in any program and there are many simple and
effective optimizations that can be applied to loops. Usually, any optimization becomes
effective only when the statements take place inside a loop.

Example:

for(int i = 0; i < 3; i++) array[i] = i;

this is logically the same as

array[0] = 0; array[1] = 1, array[2] = 2;

3.3 Reducing Calculations inside Loops
Sometimes the same expression appears many times in the code and as a result it has to be
evaluated multiple times wasting time. This can be avoided be using a temporary variable
to store the result and then use this temporary variable instead. Although this technique
improves execution speed, it makes the code less readable [7].

Consider the example:

 if ((dataStructPointer->ExpensiveFunctionCall()) < 10)
{
 /* code */
}
else if ((dataStructPointer->ExpensiveFunctionCal()) > 30)
{
 /* code */
}

This code can be rewritten as

Inttemp = dataStructPointer->ExpensiveFunctionCall() ;
if(temp < 10)
{
 /* code */
}
else if(temp > 30)
{
 /* code */
}

The second code statement is faster than the first one.

3.4 Using Assembly Code
It can be useful to look at the assembly generated by the compiler to see what is going on
and exactly how many instructions are generated for a set of C statements. This way, we
can figure out which set of C statements will run faster. For example in Microsoft Visual
C, the statement to access value of a variable by using its name generates two instructions,
whereas the same value if accessed by a pointer generates tree instructions. [5] [6]

4 Some Applied Tecniques
The Microsoft Visual C++ Profiler tool was used to find the slowest functions. The
profiler generates a list with the execution times for each function.

ICCA'04 117

4.1 Inline1
In a call to a function, a context switch occurs, that implies a push/pop of registers in stack
(Fig.1).

STACK

Save Regs
Old %ebp

Return Address
Arguments to Norma()

Save Regs

Fig.1. Stack evolution in context change.

In PIRT code the Norma() function was replaced by the code that implements its

body. By doing it, the additional code to manage the function call/return was reduced.

Original code:

extern double Norma (Vector *v)
{
 return(sqrt(v->X*v->X + v->Y*v->Y + v->Z*v->Z));
}

extern void Normalize (Vector *v)
{
 double n;
 n = Norma (v);
 if (fabs(n) > FZERO) {
 v->X /= n;
 v->Y /= n;
 v->Z /= n;
 }
}

Optimized code:

extern void Normalize (Vector *v)
{
 double n;
 n = sqrt(v->X*v->X + v->Y*v->Y + v->Z*v->Z);
 if (fabs(n) > FZERO) {
 v->X /= n;
 v->Y /= n;
 v->Z /= n;
 }
}

1 http://www-106.ibm.com/developerworks/library/l-ia.html

118 ICCA'04

4.2 Using Assembly Code
Some referred techniques were implemented in the PIRT 1.0 code. The Norma() and
fabs()functions, used several times in the source code, were modified with the code
statements referred in the next paragraph. [5] [6]

double myfabs(double x)
{
 _asm
 {
 FLD [x];
 FABS;

FSTP [x];
}
 return x;
}

double mysqrt(double x)
{
 _asm
 {
 FLD [x];
 FABS;

FSTP [x];
}
 return x;
}

5 Conclusions
The implemented optimizations had significant improvements in the execution of the

PIRT 1.0 code. Fig.1 shows the execution times due to the different optimizations. The
optimization technique of Pointer Differencing led to the fastest execution, excluding the
technique where assembly were used. It is verified that these techniques help the compiler
to generate more efficient code.

Optimizations without assembly

31245

30644
30854

30594

30964
30865

30435

29443

31004

28500
28750
29000
29250
29500
29750
30000
30250
30500
30750
31000
31250
31500

Al
ign

ed
Bo

xIn
t()

 -
Op

tim
_4

Pa
rtI

sI
tV

isi
ble

()
- O

pti
m_

5

No
rm

ali
ze

()
- O

pti
m_

1

Pa
rtI

sI
tV

isi
ble

()
No

rm
ali

ze
()

- O
pti

m_
1,

Op
tim

_5

No
rm

a()
 s

qr
t()

 -O
pti

m
_2

Pu
tP

ixe
l()

 G
et

Pi
xe

l()
-

Op
tim

_3

Op
tim

_1
, 2

, 3
, 4

 an
d 5

wi
th

ou
t O

pti
m_

4 0

5000

10000

15000

20000

25000

30000

35000

With Optim

Without Optim

Fig. 2. Optimizations without using assembly code.

ICCA'04 119

When assembly code was inserted in the C program, the PIRT 1.0 execution time reduced
6.33% (Fig.3). It achieved a reduction of two seconds in thirty and one seconds that the
PIRT 1.0 program completes its tasks without the optimizations [7].

Optimizations including assembly

30594

29042

31004

28004
28254
28504
28754
29004
29254
29504
29754
30004
30254
30504
30754
31004

fabs()
sqrt() - Optim_ASM

Optim_1, 2, 3, 5 and ASM
0

5000

10000

15000

20000

25000

30000

35000

With Optim

Without optim

Fig.3. Optimizations using assembly code.

Fig.4 shows the execution times for the following configurations:
• Without any optimizations;
• Compiler optimization for maximum speed;
• Compiler optimization for maximum speed and ASM optimization;
• Compiler optimization for maximum speed and optimizations 1,2,3,5.

Time comparison with and without compiler optimizations

29042

14651 15232 13830

0

5000

10000

15000

20000

25000

30000

35000

Without compiler
optimizations and

optimizations 1,2,3,5,ASM

Compiler optimizations for
maximum speed

Compiler optimizations for
maximum speed and ASM

optimization

Compiler optimizations for
maximum speed and

optimizations 1,2,3 e 5

Optimizations Methods

Ti
m

e
(m

s)

- 5,6%

+ 4,0%

- 52,4%

- 49,6%

Fig.4. Time comparison.

120 ICCA'04

Using full optimizations on the compiler options, the execution time reduced to 50%.
Using the compiler optimizations and the optimizations 1, 2, 3, 4, 5, and ASM, the
execution time increased 4%.

The best execution time was achieved when using together optimizations 1, 2, 3, 4, 5
(without ASM) and compiler optimizations.

The compiler generates more efficient code than the one used in the ASM

optimization. In situations where the context matters, the compiler cannot optimize the
code. In that case it is possible to obtain better execution times.

References
[1] Santos, Luis Paulo P., Parallel Intelligent Ray Tracer (PIRT) 2.0, Internal Report,

Department of Informatics, University of Minho, Portugal (1999), also in
http://gec.di.uminho.pt/psantos,

[2] TGA File Format, Technical Manual Version 2.2 January,
http://www.ludorg.net/amnesia/TGA_File_Format_Spec.html (1991).

[3] IA32 - Intel Architecture Software Developer's Manual, Volume 2 Chap 3
http://www.intel.com (2002).

[4] Randal Bryant and David O'Hallaron, Computer Systems: A Programmer's
Perspective, Prentice Hall (2002).

[5] Hennessy, John L., Patterson, David A., Computer Architecture- A Quantitative
Approach, Third Ed, Morgan Kaufmann Publishers (2003)

[6] Proença, Alberto José, Introduction to Machine-Level Representation of C Programs
- Version 2, Lecture Notes, Department of Informatics, University of Minho,
Portugal (2001)

[7] Manuel Carvalho e Carlos Silva, Técnicas de Optimização de Código C, Internal
Report, http://gec.di.uminho.pt/micei/ac/ICCA04/Proc/W1-PIRT.zip, Department of
Informatics, University of Minho, Portugal (2004)

