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Abstract. The IA-64 architecture is significantly different from previous IA-32, and it 
offers to the operating system and applications a set of features that can improve efficiency 
in code execution by reducing memory accesses. A quick overview on some IA-64 new 
features is presented, with a focus on the registers set and on the register stack engine, 
which are the main features that mostly reduce the memory accesses. 

 
 
1 Introduction 
 
The IA-64 has a complete different architecture of IA-32 processor, including the 
instruction set. In this communication we try to make an approach to this new 
architecture, by talking about some of the new features. 

This CPU has great improvements on its performance and cache organization. Here 
we will concentrate on the CPU performance and on a selected set of features. 

A brief overview is given on the features that have a significant impact on the CPU 
performance: speculation, predication, explicit parallel instruction computing (EPIC) 
and the large registers set related to the register stack engine (RSE). The latter reduces 
computation time by decreasing the number of memory accesses. 

The main goal of this communication is to analyse the registers set and the RSE. The 
RSE is not a new concept, since it was introduced by Sun in SPARC. So, we will enter 
into more detail on this register implementation - the RSE - and how it provides a more 
efficient implementation of high level language features like functions calls. 

At the end some conclusions will certainly be taken and some future perspectives will 
be made. 
 
 
2 IA-64 Architecture Overview 
 
In this section we will overview some of the new features of IA-64: speculation, 
predication and explicit parallel instruction computing. The register set and the RSE 
will be detailed in the following sections. 
 
2.1 Speculation 
  
Speculation is, in common terms, a conclusion or theory reached by conjecture. A 
unique feature of IA-64 is data and control speculation. The idea is to offer the compiler 
with a mechanism by which it can securely move load instructions around to 
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accommodate for memory access latency without the problems such as faults that may 
occur, null pointer dereferences or page faults. 
 
In the IA-64 architecture we can have data speculation by introducing advance load 
instructions. An advance load is just like a regular load in accessing memory. Still, in 
addition to that, the object register, load address and number of bytes being loaded are 
inserted in the Advance Load Address Table (ALAT). The ALAT is checked by every 
store instruction for entries with overlapping addresses. Such entries are not validated. 
At the original location of the load in the instruction stream, a speculation check chk.a 
instruction is placed. When executed, it analyses the ALAT for the entry inserted by the 
matching advance load. If the entry is there, speculation has succeeded; if not, it has 
failed and a branch is taken to fix-up code. 

 
Control speculation makes possible to the compiler to decrease the stall due to load 
instructions that suffer huge latencies resulting from cache misses. The compiler can 
speculatively program such loads far ahead of their regular position in the instruction 
stream, even in advance of intervening branch instructions. This indicates the load must 
be executed conditionally depending on the result of the branches. For such speculative 
loads, exceptions such as page faults are deferred until the result of the speculated 
branches are identified. 
 
2.2 Predication 
 
The idea is to avoid as much as possible branching on conditional statements by simply 
prefixing every instruction with a predicate. Predication is implemented using 64 
predicate registers of 1 bit each. When the predicate evaluates to true the instruction 
is executed, otherwise the instruction is not executed. The architecture provides 
powerful ways of writing complex if-then-else statements using predicates and 
parallel comparisons. In general, the compare instruction, cmp, sets the first predicate to 
true if the test is positive and the second predicate to false. With predication, both 
compares are run in parallel and they target the same predicates. The two results are 
stored and then a or operation is made to see witch one will be in fact executed, 
performing the complex if-then-else statement in 3 cycles (including 
initialization), without incurring any branches at all. 
 
2.3 Explicit Parallel Instruction Computing 
 
EPIC is a new name for the idea that was first implemented by the VLIW processors 
(Very Long Instruction Word). The idea is to present instruction level parallelism (ILP) 
to the compiler and use faster and simpler hardware. The compiler is nearer to the 
source code, which means that it can get a better understanding of what the program is 
trying to achieve, it has access to more resources in terms of time and space to help 
make optimization decisions. As VLIW processors, IA-64 groups instructions into 
bundles. Each bundle contains three instruction slots of 41 bits each and a template field 
used to encode which functional units are required (M-unit for memory access, I-unit 
for integer operations, F-unit for floating point, B-unit for branching). Dissimilar to 
VLIW, IA-64 allows concurrent execution of numerous bundles. Instructions that can 
be executed in parallel are grouped by and are terminated by a stop bit which is encoded 
in the template field. Such a stop is necessary when you have dependencies between 
successive instructions. This information essential for safe parallel execution is encoded 
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in the instruction stream. This yields better portability across CPUs of the same kind. It 
must be noted that stop bits can emerge in the middle of a bundle. 

The compiler will be the great responsible for determining and clearing the 
parallelism present in the instructions to be executed. This is a combination of 
speculation, predication and explicit parallelism. 
 
3 Registers Set  
 
The IA-64 Register set has 128 general-purpose registers, each 64 bits wide. These 
registers are conceptually similar to the general-purpose registers such as eax on the 
x86. The IA-64 general-purpose registers are named with an r, followed by the register 
number. Thus, r0 is the first general-purpose register, and r127 is the last general-
purpose register. 
The first 32 general-purpose registers (r0-r31) are static. That is, any code that refers 
to one of these registers will be referring to the exact same register in silicon. All the 
x86 registers behave this way, and therefore they can be considered static. 

Some of the static registers have predefined meanings, and are usually referred to 
some other way than their r name. The global pointer and the stack pointer are two of 
the most important registers that fit this category. The r12 register is used as the stack 
pointer and is thus called the sp register. The r1 register is the global pointer. 

In addition to the 32 static general-purpose registers, the IA-64 also has 96 dynamic 
general-purpose registers, which means that they do not always refer to the exact same 
register in silicon.  

The IA-64 also has 128 floating-point registers. They are named f0 through f127. The 
floating-point registers are 82 bits in length, allowing them to hold up to a C++ long 
double. Certain floating-point registers have predefined meanings too. For example, the 
f0 register is always set to 0.0, while the f1 register always holds the value 1.0. 
The last set of registers contain the branch registers. The IA-64 defines eight branch 
registers, named b0 through b7. These are 64-bit registers that hold the address of a 
code location that the CPU can assign control to. On the IA-64, all control transfers take 
the form of a branch. The br.call instruction is correspondent to the x86 call; the 
br.ret instruction is like the x86 ret; and a simple br instruction is similar to an 
x86 jmp. 
 
Dynamic General-Purpose Registers 
As it was mentioned before dynamic registers does not always refer to the exact same 
physical register on the CPU. That is, a register such as r37 in one function is probable 
to be assigned to a completely different physical register than r37 in another function. 

Registers will be renamed when control goes from one function to another, keeping 
values in registers and out of memory as possible; with this technique each function can 
have its own set of up to 96 registers to work with and so all local variables and 
parameters can be stored in 96 registers, from r32 through r127. This will reduce the 
memory access, which is one of the main goals of IA-64; therefore register renaming of 
the dynamic registers is a vital element to achieve that goal. 

As we all know  if a parameter needs to be passed to the stack, and the stack is, in 
case, the main memory and not the memory cache, the CPU might waste some clock 
cycles just to read the parameter, in opposite the time of access to a register can be 
single clock cycle. 
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When all 96 dynamic register are full, how the IA-64 resolves this situation? It is now 
time for the RSE enters in action 

 
 
4 The Register Stack Engine  
 
The main goal in a processor is always to speed up his performance so that the programs 
run faster. The main cause to slow a processor is its access to the memory, has was said 
before.  
 
Sliding Window in SPARC 
The idea of a window of registers that can moves from one function to another is not 
new. The SPARC architecture from Sun introduced this concept: 32 general purpose 
integer registers are visible to the program, at any given time. Of these, 8 registers are 
global registers and 24 registers are in a register window. A window consists of three 
groups of 8 registers, the output, local, and input registers. The objective is to make 
possible to some function always have his local variables on a selected window of the 
registers processor, meaning that his access will be very fast. This works very well 
when we are dealing with the same process/program; however when we move to a 
different process all the windows registers will have to be saved into the memory, thus 
most of the gain will be lost because of the time spending on saving those registers. The 
IA-64 learned with this experience and their designers created the Register Stack Engine 
(RSE).  
 
RSE 
This hardware implementation inside the processor helps a subset (the last 96) of the 
general-purpose registers implement the register stack by manipulating register 
overflows. The idea is to provide the CPU with memory stack implemented on the 
registers. The software will have unified and flexible register structure acting like the 
conventional memory stack, but much faster.  

It is the RSE and register remapping working together that makes possible for 
determined function to have all the last 96 general-purpose registers for it self. The 
remapping makes possible for a function to see always registers from r32 through 
r127, the RSE will be responsible to make a one-to-one correspondence between a 
given register in a particular function frame and where it will be saved in the Backing 
Store Memory, making the 96 dynamic registers always available. In example, we can 
say that the RSE works like a tank tread going up and down a wall. Each tread plate 
refers to a dynamic register, and the wall will be the backing store – Figure 1. 
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Fig.1 - Register Stack Engine working 

Courtesy of Hewlett-Packard 
 

This will make the function call process extremely fast and with almost no overhead. 
Each time a function/procedure is called, it is allocated a group of registers, called the 
register stack frame, from these 96 registers that will be local to that function. The 
function allocate a virtual register stack frame for itself with its size explicitly specified 
by the alloc instruction. Then, when the registers used in a function exceed the 
number of physical registers, the RSE will automatically save the register stack frame 
contents on the backing store memory managing the overflows. The work of the 
compiler in terms explicit spills will be reduced by this virtual register stack frames and 
RSE. 
 

 
Fig.2 - Block diagram of the IA-64 architecture 

Courtesy of Intel 
The management of the register stack will be made by the hardware; it also avoids 

unnecessary register spills and fills on function calls.  
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We will try to explain with more detail, using the following example, what happens 
when one function calls another function [1].  

 
Fig.3 - Register Stack Engine (RSE) 

Courtesy of Hewlett-Packard 
 

With the help of figure 3 we will try to explain what happens when function B his 
called from function A witch has 5 arguments. On top we have the current stack frame 
of function A. Each frame attributes will be on the current frame marker register (CFM). 
The size of the frame, CFM.sof, in this case the is 20. The CFM.sol, is 15 that give 
us the number of registers that will be 5 input arguments + 10 locals. With this we can 
infer that the highest number of output registers required by function A to call any other 
functions can be calculated with CFM.sof-CFM.sol=5. With the rXX notation we 
can observe the logical name of the registers that can be manipulated by the program; 
the physical registers are represented by the bars. The br.call triggers the renaming 
based on the number of output registers. Now r32 is the first argument to function B. It 
is the alloc instruction in function B that resizes the frame to the necessitate of the 
function. Evidently it has 5 arguments more 5 locals. The branch also causes the frame 
marker of function A to be copied into the previous function state register ar.pfs.  

The ar.pfs register will be conserved and saved (here in r37) and restored by 
function B in case of modification, such as a successive function call from B. 

The function A’s locals are now unreachable by the program (automatically 
preserved) and are on the physical registers which hold old state. The number of 
physical registers will be full by this renaming mechanism and the register stack engine 
will spill the old state registers to the register backing store memory. 
 

When execution returns from nested calls, the RSE automatically restores registers 
from backing store as needed.  

Two registers are very important to the process of spills and fills: ar.bspstore and 
ar.bsp. The register spills are managed by ar.bspstore in a first-in first-out 
(FIFO) manner; this register points to the memory place where the next register spill 
will happen. 

On the other hand the ar.bsp register will point over the location where the last 
register will be saved, right on the top of the backing store. The ar.bsp register will 
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advance towards the higher addresses every time a new function is called to 
accommodate the registers that are no more important to this function processing.  

The RSE can be configured to run in two different modes. This can be performed by 
an application register called ar.rsc. The two modes are the lazy mode and eager 
mode. The lazy mode means that the spills will only occur when the file of physical 
registers is exhausted. The eager mode makes possible to the RSE choose to spill 
asynchronously from program execution, this means that it can spill even if the file of 
registers is not exhausted. Currently only the lazy mode is implemented. 

We must note that a programmer has the possibility to force a spill and fill operations. 
This can be performed by explicitly use the flushrs and loadrs instructions. 

In resume the RSE switches the contents of physical registers between general register 
file and memory, providing a model that looks like unlimited register stack. It operates 
in the background and the application does not need to know that it exists or how it 
operates. The RSE is thread implemented on hardware that reads and writes the 
dynamic registers out to Backing Store Memory. 
 
 
Register Remapping 
In two forms the Instruction Set Architecture requires the remapping of register names; 
they are the register stacking and the register rotation. Register stacking ensures that the 
all of the dynamic general-purpose registers can be used by each active frame every 
time a new function is called; so the hardware control the set of registers by remapping 
the register number to the correct physical register, and by spilling and restoring the 
registers between the registers and the backing store memory. On the other hand the 
register rotation tries to improve instruction level parallelism by allowing overlapped 
execution of loop iterations. By hardware it will be possible to control counters that will 
be able to remap the registers numbers to different physical registers on different 
iterations instructions. Those counters are known as rotating register base. 
 
 
5 Conclusions 
 
By making the physical register stack size larger than the current 96, almost all the spills 
and fills can be eliminated, resulting in even greater performance advantage. The IA-64 
combines perfectly speculation, predication and explicit parallelism making the EPIC a 
reality. This Itanium is very different from IA-32 in architecture and instruction set. By 
learning with previous experiences IA-64 improved the RSE mechanism, which is a 
great advance for processors performance. We believe that the register stack of the 
Itanium architecture is a very good feature, which will become more and more 
important as future workloads become more object oriented. 
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