
A Coalgebraic Approach to the Y86 Processor
Architecture

Nuno Rodrigues

Departamento de Informática, Universidade do Minho

4710-057 Braga, Portugal

nunorodrigues@di.uminho.pt

Abstract This communication reports an attempt to use a mathematical ap-
proach to model a simpli�ed version of an X86 processor, the Y86 processor.
The main mathematic structures used in this formalization are Algebras, Coal-
gebras and Functors. To construct the Y86 processor model, some examples are
presented using both Functorial de�nitions and Haskell animations.

1 Introduction

Many areas of mathematics have contributed for the modern Systems Engineering,
namely Turing Machines, Graph Theory, Grammar Theory, Numerical Mathematics,
Logic, Algebra. Each has contributed in many ways to accomplish current mass tech-
nological world. They have created the basis of modern computers and modern pro-
gramming practices.

Universal Algebra (UA) is a well studied mathematical structure, which reasons
about sets and operations on sets elements following some strict rules. Some knowledge
in Algebra is expected from the reader, and only important aspects of algebra for the
current work will be pointed out onwards.

Using pre-determined properties in UA things can be proved about the inhabitants
of their sets, without really looking into the behaviour of those elements according
to the rules, or even without proving it for every element of the algebra set. With
this further step in abstraction, by reasoning about things and operations with certain
pre-determined properties, rather than the concrete instances of them, a much large
universe of elements and rules, can be covered without even concerning on working on
�nite or in�nite sets.

Another well studied area of UA are operations between Algebras, known as mor-
phisms. With this morphism one can jump from one Algebra to another, and prove
rules involving more then one Algebra. This kind of operations will by exploit soon,
as well as their connection to the programming world, where sometimes one may need
to jump from di�erent data representations.

Like in Universal Algebra, reasonings are base on pre-de�ned properties and rules,
in Computer Science one prefers to think at a higher level of abstraction too.

To have a way of representing the entire spectrum containing all possible data type
used in some programming language. Properties representation over them would also
be appreciated and the proof of new behaviours based on others or on the structure of
the data types themselves would be very appealing too.

ICCA'04 5

With this in mind, the structure of data types are more relevant than their particular
implementations, i.e., it is better to de�ne lists of things rather than lists of chars or
strings, since the former representation is a particular case of the previous one.

A possible solution for this quest for data type representation is somewhat hidden
in Universal Algebra, and its underlying structure. With Algebra and some category
theory, we can capture many and essential aspects of data type structures used in
Computer Science.

A particular application of Algebra theory are Algebras of Functors, where we
get the Functor 1 concept from Category Theory. Algebras of Functors are algebraic
structures working over functors or, in other words, where the algebra's set is a set of
functors.

To illustrate this idea of algebras working over functors applied to Computer Sci-
ence, we continue presenting an example.

Using this notation a de�nition of a list containing some kind of elements is given
by the following notation:

X ∼= 1 + A×X

If we look at X as our data structure, in this case generic Lists, 1 as *, a given
single set and A as a generic set of elements, then we can construct an Algebra (X,<
nil, cons >) with [nil, cons] : 1+A×X → X where X is representing all generic Lists.

Another way to regard the above formula follows: to construct a List we need an
empty list, being it already a list or an element of a list (A) and another list (X).

By using structures of this kind, we can reason about any kind of lists, without
looking into their inhabitant types or even structures.

This kind of algebraic methods, known as algebraic speci�cation or abstract data
type theory goes much further in modelling Computer Science data types, and capture
important properties and operations between those data types, but for now this should
be enough.

In the following sections, we introduce the idea of Coalgebras, why they are useful
in Computer Science, some examples and �nally apply such structures to the Y86
architecture.

2 From Algebras to Coalgebras

The main distinction of this two mathematical structures is that Algebras refer to
Construction while on the other hand Coalgebras refer to Destruction/Observation, in
a manner that we will made explicit with some examples. This phenomenon captures
the main reason why we say that Coalgebras are dual to Algebras.

While in Algebras we were concerned about constructing objects that ful�ll the
Algebra's set, like functions α and β, in Coalgebras we want to observe elements of X
by desiccating such elements into more elemental elements that compose the �rst.

In order to illustrate better this destruction phenomena behind Coalgebras we
present a simple example of a Coalgebraic model.

Lets describe a simple object-oriented class that represents 2D points, with two
coordinates, x and y.

Over our class we de�ne three buttons (known as methods in objet oriented ter-
minology), a �rst : X → R button retrieving the �rst coordinate of our class, a

1For the interested reader we suggest some investigation over category theory

6 ICCA'04

second : X → R giving the second coordinate of our point and a third button
move : X → XR×R moving a point by x, y units on horizontal and vertical direc-
tions respectively. This three buttons of such a class can be combined into a single
function

< first, second, move >: X → <×<×X(<×<)

which forms a coalgebra on the state space X.
Another interesting thing about our object oriented class is that we know anything

about its state behaviour, the only observations we can make is throw the first and
second buttons.

Along with this lack of information about an internal state of our classes, cames the
indistinguishability of classes based on the observation functions that we may use. In
this way, we can say that two classes returning the same value for both the first and
second functions are indistinguishable, but not meaning that both classes are equal
since we know nothing about their internal state.

Again, by saying that two classes are indistinguishable we mean that they have the
same behaviour for the known observation functions at our dispose, which is the same
thing if we state that for an outside observer they preform the same visible functionality.

3 The Y86 Processor

The Y86 processor is a theoretic processor developed from a real IA32 architecture,
from Intel, very close to a subset of the original X86. Basically it is a simpli�ed version
of the IA32 architecture, created aiming to better explain some functionalities and
characteristics of a real and more complex processor.

Though the Y86 processor is a simpli�ed version of its older brother, its architecture
description is still very detailed and ful�lling about 150 pages of exhaustive processor
description.

In our particular case, we are just concerned about some speci�c aspects of the
Y86 architecture, so we will only describe the relevant parts of the architecture for our
current issues. For more details about the Y86 processor architecture, see [3].

3.1 The Y86 Instruction Set Architecture

The Y86 instruction set contains 12 main instructions, some are real instructions, others
represent instruction families like jXX, that represents the di�erent jump combinations,
jmp, jle, jl, je, jne, jge, and jg.

The instruction names are self explanatory about the instruction operations over
the registers, but to make it clearer, a brief description of each instruction operations
is given below.

There are four integer operation instructions, shown in Figure 1 as OPl : addl, subl,
andl, and xorl. They operate only on register data, whereas IA32 also allows operations
on memory data.

The seven jump instructions (shown in Figure 1 as jXX) are jmp, jle, jl, je, jne,
jge, and jg. Branches are taken according to the type of branch and the settings of the
condition codes. The branch conditions are the same as with IA32.

The call instruction pushes the return address on the stack and jumps to the des-
tination address. The ret instruction returns from such a call, poping from the stack
the return address.

The pushl and popl instructions implement push and pop, just as they do in IA32.

ICCA'04 7

Figure 1: Y86 instruction set. Instruction encodings range between 1 and 6 bytes.
An instruction consists of a one-byte instruction speci�er, possibly a one-byte register
speci�er, and possibly a four-byte constant word. Field fn speci�es a particular integer
operation (OPl) or a particular branch condition (jXX). All numeric values are shown
in hexadecimal. (Courtesy of Pearson Education, Inc)

The halt instruction stops instruction execution. IA32 has a comparable instruction,
called hlt. IA32 application programs are not permitted to use this instruction, since
it causes the entire system to stop. We use halt in our Y86 programs to stop the
simulator.

As shown in Figure 3, each of the eight program registers has an associated register
identi�er (ID) ranging from 0 to 7. The numbering of registers in Y86 matches what
is used in IA32. The program registers are stored within the CPU in a register �le, a
small random-access memory where the register IDs serve as addresses. ID value 8 is
used in the instruction encodings when we need to indicate that no register should be
accessed.

3.2 Programming the Y86 processor

With the above architecture it is very simple to develop Y86 programs. Basically a
programmer sees 12 instructions and 8 registers.

We this in mind, we just have to make use of the instructions that we dispose,
and reference either registers, constants, or memory locations, according to the speci�c
instruction de�nition that we are using. By doing this we write one operation over the
Y86 processor. Now, if we build a logical sequence of well de�ned operations, we have
an Y86 program.

With this sequence of instructions, the processor will sequentially execute every
instruction, according to its place in the sequence. It works as a straight forward

8 ICCA'04

Figure 2: Function codes for Y86 instruction set. The codes specify a particular integer
operation or branch condition. These instructions are shown as OPl and jXX in Figure
1.(Courtesy of Pearson Education, Inc)

Figure 3: Y86 program register identi�ers. Each of the eight program registers has an
associated identifer (ID) ranging from 0 to 7. ID 8 in a register �eld of an instruction
indicates the absence of a register operand. (Courtesy of Pearson Education, Inc)

ICCA'04 9

machine, interpreting every instruction in order of appearance in the sequence, only
changing this behaviour when running through a jump or branch instruction. As an
example consider the following Y86 program:

1 Sum: pushl %ebp

2 rrmovl %esp,%ebp

3 mrmovl 8(%ebp),%ecx ecx = Start
4 mrmovl 12(%ebp),%edx edx = Count
5 irmovl $0, %eax sum = 0
6 andl %edx,%edx

7 je End

8 Loop: mrmovl (%ecx),%esi get *Start
9 addl %esi,%eax add to sum
10 irmovl $4,%ebx

11 addl %ebx,%ecx Start++
12 irmovl $-1,%ebx

13 addl %ebx,%edx Count�
14 jne Loop Stop when 0
15 End:

16 popl %ebp

17 ret

4 Y86 Machine Formal Model

To capture an adequate Y86 model as a working machine, one would like to provide a
model capturing the central properties and operations of such a processor. Even more,
we would appreciate the model to be able to give us something else, at least the means
to formally reason about Y86 programs as a mathematical calculus of instructions. To
accomplish this goals we start by de�ning a Funtor for an Y86 instruction, and then a
Functor for an Y86 programm, where the latter relies on the de�nition of the previous
one.

To explain better the model of the Y86 processor, we animate the with Haskell (a
functional programming language). This way, every mentioned Functorial de�nition
has its equivalent implementation in Haskell, which can be interpreted2 with a Haskell
interpreter like Hugs.

4.1 Y86 Instructions

There is a common denominator to all the instructions of the Y86 processor, presented
above. They all take the processor from one state to another, performing something
in the processor internal state. Like so, every operation is an instance of the following
signature

Inst : S → S

where S denotes the Y86 processor state, from whom we are not concerned to know
any details for now.

At a deeper level we can observe di�erent kinds of behaviours in the Y86 processor
instructions. Some of them take some arguments in order to compute a new state,
while others need any kind of arguments to execute.

2For more info about the Haskell language see http://www.haskell.org

10 ICCA'04

A mathematical way of de�ning this idea, of getting some arguments in order to
produce a new processor state, is making use of the exponential functors, resulting in
the next result

Inst : A → SS

meaning that this instruction needs some input of kind A in order to give a state
transition function SS ∼= S → S. So Inst(a), a ∈ A is a simple transition function of
our known kind S → S, which can be applied to a processor sate and make it evolve
to another state.

Again, doing the same exercise we have been doing to formulate these Y86 instruc-
tions de�nitions, we can analyse the kind of our last instructions arguments, that we
have simpli�ed to hold a certain kind A.

If we look at our instructions, then we realize that we can group them based on
the input we have to supply to each one. With this basis we can identify two di�erent
aspects of passing input to an instruction, a �rst one regarding the number of inputs,
and a second one regarding their type.

As an approach to de�ning more then one argument in an instruction, we can de�ne
it like

Inst :
∏n A → SS

where n ∈ N is the number of arguments our instruction takes.
About the second issue, the di�erent types of our arguments, we can solve it by

using several type variables.
Combining all this analysis, we end up with with the following instruction de�nition

Inst :
∏n Ai → SS

where the index i ∈ N de�nes the di�erent possible types of each instruction input.
Equivalent Haskell de�nitions can be found at

http://gec.di.uminho.pt/micei/ac0304/icca04/10920_y86haskell.pdf.

4.2 Y86 States

In order to specify the Y86 state, in the way we have been leading our de�nitions, we
just need to concerned abut the visible outside e�ects of such a state.

Like in a digital watch, where we are just concerned about knowing the current
time in a speci�ed moment, and not concerned about the internal mechanisms that
make it possible to tell the time in a precise moment.

For an outsider and as far as we are concerned, inside a digital clock there are 24
possible values for the hours and 60 possible values for the minutes, and in a certain
moment there can be only one value for each of the �elds hour and minutes. Everything
else are technological problems of the digital clock implementation.

As in the clock example, about the Y86 processor internal state, we are just con-
cerned about representing eight general use registers. Again, and for now, everything
else is electronic sugar. This approach would lead us to the following de�nition for the
Y86 State

F (X) ∼= A8 ∼= A× A× A× A× A× A× A× A

ICCA'04 11

Where A represents the type of a registry.
The equivalent implementation in Haskell is

data Y86State = St { regs :: [Double],

mach :: [Y86Operation Y86State ()]

}

where the tag regs identi�es a list3 of registries, which in our case has a static
length of 8.

4.3 Y86 program

Like we have said before a program for the Y86 is merely a sequence of instructions,
so here we keep that idea while de�ning our data type for the Y86 Program. As so, we
de�ne it like

F (X) ∼= Inst∗ ∼= 1 + Inst× F (X)

which is a simple list of instructions having the already discussed instruction type.
Notice that every instruction in this list has a well determine position inside the

instructions sequence. This will be of very importance in the next section where we
de�ne the Y86 processor simulator, and will need to perform jumps inside the Y86
Program.

4.4 The Y86 Simulator

The Y86 simulator is an attempt to animate the presented de�nitions, by seing the
machine interpreting the various instructions in the same way the Y86 would work. In
order to do so, we need to de�ne how the sequence of instructions, de�ned in 4.3, will
be interpreted.

Following our mathematical way of reasoning about the Y86 processor, we will use
another mathematical structure, Monads[6] , on top of which we will de�ne the Y86
simulator.

The particular case of Monads that we are interested here is of Monads regarding
Functors. The main property that we will exploit out of Monads and at the same time
the reason why we use them, is the existence of a function µ : F 2(A) → F (A) that
somehow �attens our data type and a unit function u : A → F (A).

With this two functions we can make use of the kleisli composition, which tells us
that if have two functions f : B → F (C) and g : A → F (B) that can´t be composed
linearly, we can indeed compose them by using the following de�nition

f • g = µ · F (f) · g

The great thing about this result is that now we can use Kleisli composition to our
sequence of Instructions, as long as we provide a de�nition for functions f and µ over
our instructions Functor.

Before we do so, there is a Monad already de�ned and studied that matches perfectly
our needs, which is the Sate Monad. This Monad works over the following Functor

3The use of list a here is just because of future implementation simpli�cation. The more accurate
data structure would be a 8th − Tuple.

12 ICCA'04

F (X) ∼= (X → A×X)

that with some instantiations has the same type of our instructions.
The equivalent de�nition in Haskell and the respective Monad instance are the

following

data Y86Operation s v = Op (s -> (v, s))

instance Monad (Y86Operation s)

where return a = Op (\x -> (a, x))

(Op f) >>= g = Op (\s -> let (a, s2) = f s

Op fun = g a

in fun s2)

Now, and has stated, we just have to apply >>= which represents the Kleisli
composition in Haskell4 to the sequence of instructions, having then a single instruction
that computes the result (something of type Y86 State) whenever we pass it an initial
state, typically a state where the registers are all set to 0.

5 Conclusions and Future Work

The attempt to use a formal approach to model the Y86 processor is is just a �rst step
towards a Mathematical way of reasoning over the functionality of a machine.

In this case, we have been able to de�ne a formal model of the Y86 processor, by
dissecting the processor in its atomic components and then modelling these simpler
components. Its this simple components de�nition that combined into a single model
ful�lls the Y86 formal model. This represents the basis of our way of reasoning over
the Y86 Processor.

During the model development process of the Y86, several simpli�cations of the
original Y86 processor took place. The main simpli�cations are, not regarding a RAM
memory, not all instructions are implemented and some Processor �ags (like ZF, SF and
OF) were not taken into account. The implemented instructions are, rrmovl, irmovl,
addl, subl, jmp, je and jne. We are aware of this well de�ned forced simpli�cations,
and many of them could be easily implemented by following the presented modelation
process.

Di�erent mathematical approaches could have been used to model the Y86 Proces-
sor, with particular gains and losses in certain points. Just to elucidate the reader,
some of the possible approaches could have been through Turing Machines, Graph
Theory, Grammar Theory, Logic.

The selected approach is centered in Coalgebras, and this is due to the announced
characteristics of Coalgebras like general representation of objects inside the Coalge-
bra, properties proof over the entire Coalgebra, easy parallel implementation of the
mathematical model in a functional programming environment.

In this article we have only focus the modelling of the Y86 processor, the next
interesting step would be to de�ne a Bissimulation relation between Y86 programs in
order to derive an equality relation between Y86 Programs. With this equality relation

4The full Haskell de�nition of the Y86 model is at
http://gec.di.uminho.pt/micei/ac0304/icca04/10920_y86haskell.pdf

ICCA'04 13

we mean not a simple list comparison, which is the underlying structure of our Y86
programs, but a more elaborate way of comparing Y86 programs where for example,
the two following programs would be the same, since they both

prog1 = [opIRMovl 4.0 1, opIRMovl 5.0 2, opAddl 1 2]

prog2 = [opIRMovl 4.0 1, opIRMovl 5.0 3, opAddl 1 3,

opRRMov 3 2]

produce the same observable �nal state.
Another important issue, would be to de�ne a calculus over the presented model to

calculate new programs equivalent to original ones but with less instructions.
A modi�cation of the model to introduce a weight5 in every instruction, and then

use it to derive new optimized programs from previous ones would also be very much
welcome as future work over the model.

References

[1] Luís M. D. C. Soares Barbosa. Components as Coalgebras. PhD thesis, Universidade
do Minho, 2001.

[2] R. Bird. Functional Programming Using Haskell. Series in Computer Science. ph,
1998.

[3] Randal E. Bryant and David R. O'Hallaron. Computer Systems: A Programmer's
Perspective. Prentice Hall, 2002.

[4] H. Peter Gumm. Elements of the general theory of coalgebras. Technical report,
Lecture Notes for LUTACS'99, South Africa, 1999.

[5] B. Jacobs and J. Rutten. A tutorial on (co)algebras and (co)induction. EATCS
Bulletin, 62:222�159, 1997.

[6] J. N. Oliveira. A look at monads. Chapter of Book, 2000.

[7] N. Rodrigues and L. S. Barbosa. On the speci�cation of a component repository.
In Z. Liu, editor, Proc. of FACS´03, (Formal Approaches to Component Software),
Pisa, Spetember 2003.

[8] J. Rutten. Universal coalgebra: A theory of systems. Technical report, CWI,
Amsterdam, 1996.

5This weight can point di�erent physical realities, like time to execute, power consumption, heat
generated, etc.

14 ICCA'04

