
Advanced Computer Architecture Chapter 5 (Part I) CMSC 611

1 (April 1, 1999 5:18 pm)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Memory Hierarchy Overview
The principle of locality says that programs do NOT access code and data
uniformly.

Also, smaller hardware is faster, and faster hardware is more expensive.

This has led to a memory hierarchy:

Performance enhancements are realizable by keeping frequently used code/
data in fast memory and the rest in slower memory.

Registers (FFs)

Caches (SRAM)

Main memory (DRAM)

Virtual memory (Disk)

Storage (Disk/Tape/...)

decrease
in
access
time

increase
in cost
per
byte

encapsulates

Advanced Computer Architecture Chapter 5 (Part I) CMSC 611

2 (April 1, 1999 5:18 pm)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Characterizing Memory Hierarchy

Four questions can be posed about any 2 levels of the memory hierarchy:
• Where can a block be placed in the upper level ?

Block placement.

• How is a block found if it is in the upper level ?
Block identification.

• Which block should be replaced on a miss ?
Block replacement.

• What happens on a write ?
Write strategy.

We’ll focus on the interface between static and dynamic RAM (the CPU’s
memory cache) and dynamic RAM and disk (virtual memory).

Advanced Computer Architecture Chapter 5 (Part I) CMSC 611

3 (April 1, 1999 5:18 pm)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Memory System Performance
A formula to evaluate the effectiveness of the memory hierarchy:

We will use a related formula to evaluate the performance of various memory
system configurations.

There are several factors in this equation:
• IC * Mem refs per instruction

This is the frequency with which the CPU uses memory.
A memory system that need only satisfy 1-2 references per cycle is easier
to build than one that satisfies 4-5.

• Miss rate
This is the fraction of references that are not satisfied in the upper level.
They require an access to the lower, slower level to be satisfied.

• Miss penalty
The penalty is the length of time it takes to access the lower level.
A low miss rate is not much help if the miss penalty is very high.

Memory stall cycles IC Mem refs per instruction Miss rate Miss penalty×××=

Advanced Computer Architecture Chapter 5 (Part I) CMSC 611

4 (April 1, 1999 5:18 pm)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Basic Cache Summary (from 411)
If the term cache is used without any modifiers, it usually means the fast
memory closest to the CPU.

Recently, cache has been used for everything from files to WWW pages.

Block Placement: Three possibilities:

0 5 10 15 20 25 30

0 5 0 5 0 2

Fully associative Direct mapped Set associative

12 mod 8 = 4 12 mod 4 = 0

31

Advanced Computer Architecture Chapter 5 (Part I) CMSC 611

5 (April 1, 1999 5:18 pm)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Basic Cache Summary
• Direct mapped

Block can only go in one place in the cache (usually address MOD number
of blocks in cache).

• Fully associative
Block can go anywhere in cache.

• Set associative
Block can go in one of a set of places in the cache.

A set is a group of blocks in the cache.

In a set-associative cache, a block is first mapped to a set by using block
address MOD number of sets in the cache.

A block may then be placed anywhere in that set.
If sets have n blocks, the cache is said to be n-way set associative.

Note that direct mapped is the same as 1-way set associative, and fully asso-
ciative is m-way set-associative (for a cache with m blocks).

Advanced Computer Architecture Chapter 5 (Part I) CMSC 611

6 (April 1, 1999 5:18 pm)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Basic Cache Summary
Block Identification: Finding data in the cache.

Components of an address as they relate to the cache:

• Block offset
The first few bits of the address give the offset of the byte within a block.

• Block address (index)
Used to pick a set from the cache.

• Tag
Only the tag is stored in the cache.
All tags within a set are searched in parallel.

• Valid bit
Indicates that the block in this location contains valid data.
Otherwise, a random sequence of bits could be mistaken for a valid
entry that matched the tag.

Offset
IndexTag

Block Address

Selects setStored in cache and used
in comparison with CPU address

Selects data within the
block

Advanced Computer Architecture Chapter 5 (Part I) CMSC 611

7 (April 1, 1999 5:18 pm)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Basic Cache Summary
Block Replacement: Which block is replaced ?

This only applies to fully associative and set associative caches.

For direct mapped, each block can only go in one location.

• Random
Choose a block from the set at random.

• LRU
Choose the least-recently used block.

Replace the block that has been unused for the longest time.
This requires extra bits in the cache to keep track of accesses.

It turns out that LRU isn’t much better than random replacement.

Advanced Computer Architecture Chapter 5 (Part I) CMSC 611

8 (April 1, 1999 5:18 pm)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Basic Cache Summary
Write Strategy: What happens on a write ?

All instruction access are reads and most data accesses are reads (DLX,
9% stores and 26% loads).

Making the common case fast means optimizing caches for reads.
The common case is also the easy case to handle since tag checking
and reading can occur in parallel.

Plus, extra bytes read can be ignored.

However, Amdahl’s law reminds us that we cannot ignore writes.
Problem: Tag checking and writing can NOT occur in parallel.
Therefore, writing is usually slower than reading.
Plus, extra bytes can NOT be written.

Advanced Computer Architecture Chapter 5 (Part I) CMSC 611

9 (April 1, 1999 5:18 pm)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Basic Cache Summary
Write policy

This determines what happens when a block is written to the cache, and
when the write is communicated to the lower level (main memory).

• Write-through
In this scheme, the block is written both to the cache and main memory.

• Write back (also copy back)
In this scheme, only the block in cache is modified.

Main memory is modified when the block must be replaced in the
cache.

This requires the use of a dirty bit to keep track of which blocks have
been modified.

Write-through adv: Read misses don’t result in writes, memory hierarchy is
consistent and it is simple to implement.

Write back adv: Writes occur at speed of cache and main memory bandwidth
is smaller when multiple writes occur to the same block.

Advanced Computer Architecture Chapter 5 (Part I) CMSC 611

10 (April 1, 1999 5:18 pm)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Basic Cache Summary
Write misses

If a miss occurs on a write (the block is not present), there are two
options.

• Write allocate
The block is loaded into the cache on a miss before anything else occurs.

• Write around (no write allocate)
The block is only written to main memory

It is not stored in the cache.

In general, write-back caches use write-allocate, and write-through caches use
write-around.

This is true in the former case because it is hoped that subsequent writes to
that block will be captured by the cache.

In the latter case, subsequent writes to that block will still go to memory.

Advanced Computer Architecture Chapter 5 (Part I) CMSC 611

11 (April 1, 1999 5:18 pm)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Basic Cache Summary
 Write buffers

To avoid stalling on writes, many CPUs use a write buffer.
A small cache that can hold a few values waiting to go to main mem-
ory.

This buffer helps when writes are clustered.

It does not entirely eliminate stalls since it is possible for the buffer to fill
if the burst is larger than the buffer.

 Write merging
Blocks are often larger than a machine word.
Many write buffers can merge memory writes to save both write buffer
space and memory traffic.

For example, two writes to the same location can be collapsed or, two
writes to sequential locations can be merged into a single buffer space.

Advanced Computer Architecture Chapter 5 (Part I) CMSC 611

12 (April 1, 1999 5:18 pm)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Basic Cache Summary
Split vs. unified caches
• Unified cache

All memory requests go through a single cache.
This requires less hardware, but also has lower bandwidth and more
opportunity for collisions.

• Split I & D cache
A separate cache is used for instructions and data.
This uses additional hardware, though there are some simplifications
(the I cache is read-only).

Advanced Computer Architecture Chapter 5 (Part II) CMSC 611

1 (April 6, 1999 2:24 pm)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Cache Performance
Average memory access time is a useful measure to evaluate the performance
of a memory-hierarchy configuration.

It tells us how much penalty the memory system imposes on each access (on
average).

It can easily be converted into clock cycles for a particular CPU.

But leaving the penalty in nanoseconds allows two systems with different
clock cycles times to be compared to a single memory system.

Avg mem access time hit time miss rate miss penalty×+=

Advanced Computer Architecture Chapter 5 (Part II) CMSC 611

2 (April 6, 1999 2:24 pm)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Cache Performance
There may be different penalties for Instruction and Data accesses.

In this case, you may have to compute them separately.

This requires knowledge of the fraction of references that are instructions
and the fraction that are data.

The text gives 75% instruction references to 25% data references.

We can also compute the write penalty separately from the read penalty.

This may be necessary for two reasons:
• Miss rates are different for each situation.
• Miss penalties are different for each situation.

Treating them as a single quantity yields a useful CPU time formula:

CPU time IC CPIexecution
Memory access

Instruction
------------------------------------- Miss rate Miss penalty××+ 

  Clock Cycle Time××=

Advanced Computer Architecture Chapter 5 (Part II) CMSC 611

3 (April 6, 1999 2:24 pm)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

An Example
Compare the performance of a 64KB unified cache with a split cache with
32KB data and 16KB instruction.

The miss penalty for either cache is 100 ns, and the CPU clock runs at 200
MHz.

Don’t forget that the cache requires an extra cycle for load and store hits
on a unified cache because of the structural conflict.

Calculate the effect on CPI rather than the average memory access time.

Assume miss rates are as follows (Fig. 5.7 in text):
• 64K Unified cache: 1.35%
• 16K instruction cache: 0.64%
• 32K data cache: 4.82%

Assume a data access occurs once for every 3 instructions, on average.

Advanced Computer Architecture Chapter 5 (Part II) CMSC 611

4 (April 6, 1999 2:24 pm)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

An Example
The solution is to figure out the penalty to CPI separately for instructions and
data.

First, we figure out the miss penalty in terms of clock cycles: 100 ns/5 ns = 20
cycles.

For the unified cache, the per-instruction penalty is (0 + 1.35% x 20) =
0.27 cycles.

For data accesses, which occur on about 1/3 of all instructions, the pen-
alty is (1 + 1.35% x 20) = 1.27 cycles per access, or 0.42 cycles per instruc-
tion.

The total penalty is 0.69 CPI.

In the split cache, the per-instruction penalty is (0 + 0.64% x 20) = 0.13 CPI.
For data accesses, it is (0 + 4.82% x 20) x (1/3) = 0.32 CPI.
The total penalty is 0.45 CPI.

In this case, the split cache performs better because of the lack of a stall on
data accesses.

Advanced Computer Architecture Chapter 5 (Part II) CMSC 611

5 (April 6, 1999 2:24 pm)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Effects of Cache Performance on CPU Performance
• Low CPI machines suffer more relative to some fixed CPI memory penalty.

A machine with a CPI of 5 suffers little from a 1 CPI penalty.
However, a processor with a CPI of 0.5 has its execution time tripled !

• Cache miss penalties are measured in cycles, not nanoseconds.
This means that a faster machine will stall more cycles on the same mem-
ory system.

Amdahl’s Law raises its ugly head again:
Fast machines with low CPI are affected significantly from memory
access penalties.

Advanced Computer Architecture Chapter 5 (Part II) CMSC 611

6 (April 6, 1999 2:24 pm)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Improving Cache Performance
The increasing speed gap between CPU and main memory has made the per-
formance of the memory system increasingly important.

15 distinct organizations characterize the effort of system architects in reduc-
ing average memory access time.

These organizations can be distinguished by:
• Reducing the miss rate.
• Reducing the miss penalty.
• Reducing the time to hit in a cache.

Advanced Computer Architecture Chapter 5 (Part II) CMSC 611

7 (April 6, 1999 2:24 pm)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Reducing Cache Misses
Components of miss rate: All of these factors may be reduced using various
methods we’ll talk about.

• Compulsory
Cold start misses or first reference misses: The first access to a block can
NOT be in the cache, so there must be a compulsory miss.

These are suffered regardless of cache size.
• Capacity

If the cache is too small to hold all of the blocks needed during execution
of a program, misses occur on blocks that were discarded earlier.

In other words, this is the difference between the compulsory miss rate
and the miss rate of a finite size fully associative cache.

• Conflict
If the cache has sufficient space for the data, but the block can NOT be
kept because the set is full, a conflict miss will occur.

This is the difference between the miss rate of a non-fully associative
cache and a fully-associative cache.

These misses are also called collision or interference misses.

Advanced Computer Architecture Chapter 5 (Part II) CMSC 611

8 (April 6, 1999 2:24 pm)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Reducing Cache Miss Rate
To reduce cache miss rate, we have to eliminate some of the misses due to the
three C’s.

We cannot reduce capacity misses much except by making the cache larger.

We can, however, reduce the conflict misses and compulsory misses in several
ways:

• Larger cache blocks
Larger blocks decrease the compulsory miss rate by taking advantage of
spatial locality.

However, they may increase the miss penalty by requiring more data to
be fetched per miss.

In addition, they will almost certainly increase conflict misses since fewer
blocks can be stored in the cache.

And maybe even capacity misses in small caches.

Advanced Computer Architecture Chapter 5 (Part II) CMSC 611

9 (April 6, 1999 2:24 pm)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Reducing Cache Miss Rate
• Larger cache blocks

The performance curve is U-shaped because:
Small blocks have a higher miss rate and
Large blocks have a higher miss penalty (even if miss rate is not too
high).

High latency, high bandwidth memory systems encourage large block sizes
since the cache gets more bytes per miss for a small increase in miss
penalty.

32-byte blocks are typical for 1-KB, 4-KB and 16-KB caches while 64-
byte blocks are typical for larger caches.

16 32 64 128 256

Performance

Block size

Advanced Computer Architecture Chapter 5 (Part II) CMSC 611

10 (April 6, 1999 2:24 pm)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Reducing Cache Miss Rate
• Higher associativity

Conflict misses can be a problem for caches with low associativity (espe-
cially direct-mapped).

2:1 cache rule of thumb: a direct-mapped cache of size N has the same
miss rate as a 2-way set-associative cache of size N/2.

However, there is a limit -- higher associativity means more hardware
and usually longer cycle times (increased hit time).

In addition, it may cause more capacity misses.

Nobody uses more than 8-way set-associative caches today, and most
systems use 4-way or less.

The problem is that the higher hit rate is offset by the slower clock cycle
time.

Advanced Computer Architecture Chapter 5 (Part II) CMSC 611

11 (April 6, 1999 2:24 pm)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Reducing Cache Miss Rate
• Victim caches

A victim cache is a small (usually, but not necessarily) fully-associative
cache that holds a few of the most recently replaced blocks or victims
from the main cache.

Can improve miss rates without affecting the processor clock rate.

This cache is checked on a miss before going to main memory.
If found, the victim block and the cache block are swapped.

Data
Victim cache

=?

CPU
address

Tag

=?

Advanced Computer Architecture Chapter 5 (Part II) CMSC 611

12 (April 6, 1999 2:24 pm)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Reducing Cache Miss Rate
• Victim caches

It can reduce capacity misses but is best at reducing conflict misses.

It’s particularly effective for small, direct-mapped data caches.
A 4 entry victim cache handled from 20% to 95% of the conflict
misses from a 4KB direct-mapped data cache.

• Pseudo-associative caches
These caches use a technique similar to double hashing.

On a miss, the cache searches a different set for the desired block.
The second (pseudo) set to probe is usually found by inverting one or
more bits in the original set index.

Note that two separate searches are conducted on a miss.
The first search proceeds as it would for direct-mapped cache.
Since there is no associative hardware, hit time is fast if it is found the
first time.

Advanced Computer Architecture Chapter 5 (Part II) CMSC 611

13 (April 6, 1999 2:24 pm)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Reducing Cache Miss Rate
• Pseudo-associative caches

While this second probe takes some time (usually an extra cycle or two),
it is a lot faster than going to main memory.

The secondary block can be swapped with the primary block on a
“slow hit”.

This method reduces the effect of conflict misses.

Also improves miss rates without affecting the processor clock rate.

• Hardware prefetch
Prefetching is the act of getting data from memory before it is actually
needed by the CPU.

Typically, the cache requests the next consecutive block to be fetched
with a requested block.

It is hoped that this avoids a subsequent miss.

Advanced Computer Architecture Chapter 5 (Part II) CMSC 611

14 (April 6, 1999 2:24 pm)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Reducing Cache Miss Rate
• Hardware prefetch

This reduces compulsory misses by retrieving the data before it is
requested.

Of course, this may increase other misses by removing useful blocks
from the cache.

Thus, many caches hold prefetched blocks in a special buffer until
they are actually needed.

This buffer is faster than main memory but only has a limited capac-
ity.

Prefetching also uses main memory bandwidth.
It works well if the data is actually used.
However, it can adversely affect performance if the data is rarely
used and the accesses interfere with ‘demand misses’.

Advanced Computer Architecture Chapter 5 (Part III) CMSC 611

1 (April 8, 1999 3:45 pm)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Reducing Cache Miss Rate
• Compiler-controlled prefetch

An alternative to hardware prefetching.

Some CPUs include prefetching instructions.
These instructions request that data be moved into either a register or
cache.

These special instructions can either be faulting or non-faulting.
Non-faulting instructions do nothing (no-op) if the memory access
would cause an exception.

Of course, prefetching does not help if it interferes with normal CPU
memory access or operation.

Thus, the cache must be nonblocking (also called lockup-free).

This allows the CPU to overlap execution with the prefetching of data.

Advanced Computer Architecture Chapter 5 (Part III) CMSC 611

2 (April 8, 1999 3:45 pm)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Reducing Cache Miss Rate
• Compiler-controlled prefetch

While this approach yields better prefetch “hit” rates than hardware
prefetch, it does so at the expense of executing more instructions.

Thus, the compiler tends to concentrate on prefetching data that are
likely to be cache misses anyway.

Loops are key targets since they operate over large data spaces and
their data accesses can be inferred from the loop index in advance.

• Compiler optimizations
This method does NOT require any hardware modifications.

Yet it can be the most efficient way to eliminate cache misses.

The improvement results from better code and data organizations.
For example, code can be rearranged to avoid conflicts in a direct-
mapped cache, and accesses to arrays can be reordered to operate on
blocks of data rather than processing rows of the array.

Advanced Computer Architecture Chapter 5 (Part III) CMSC 611

3 (April 8, 1999 3:45 pm)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Reducing Cache Miss Rate
• Compiler optimizations

Merging arrays
This method combines two separate arrays (that might conflict for a
single block in the cache) into a single interleaved array.

This brings together corresponding elements in both arrays, which
are likely to be referenced together.

Reorganizing and fetching them at the same time can reduce misses.

This technique reduces misses by improving spatial locality.

int val[SIZE];
int key[SIZE];

struct merge {
int val;
int key;
};

struct merge MA[SIZE];

Advanced Computer Architecture Chapter 5 (Part III) CMSC 611

4 (April 8, 1999 3:45 pm)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Reducing Cache Miss Rate
• Compiler optimizations

Loop interchange
By switching the order in which loops execute, misses can be reduced
due to improvements in spatial locality.

For example,

These loops cause a miss on each memory access because of the long
stride given by index j in the inner loop.

By switching the order of the loops, the stride is changed to 1, allow-
ing the elements to be accessed in sequential order.

for (i = 0; i < 100; i++) {
for (j = 0; j < 100; j++) {

a[j][i] = a[j][i] * 2;
}

}

Advanced Computer Architecture Chapter 5 (Part III) CMSC 611

5 (April 8, 1999 3:45 pm)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Reducing Cache Miss Rate
• Compiler optimizations

Loop Fusion
Many programs have separate loops that operate on the same data.

Combining these loops allows a program to take advantage of tem-
poral locality by grouping operations on the same (cached) data
together.

Blocking
The above methods work well on array accesses that occur along one
dimension only.

However, loops that access both rows and columns, such as matrix
multiplication, are problems.

Advanced Computer Architecture Chapter 5 (Part III) CMSC 611

6 (April 8, 1999 3:45 pm)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Reducing Cache Miss Rate
Blocking

Unoptimized matrix multiplication requires the cache to hold the
minimum elements shown shaded below.

Capacity misses can occur for large matrices since it may not be pos-
sible to store all the elements of Z in the cache.

Blocking operates on blocks (submatrices) as shown by the dotted
line, and reduces the total number of memory words accessed by a
factor of B (the blocking factor).

X Y Z

Data accessed to compute a row of X using X = Y*Z

Advanced Computer Architecture Chapter 5 (Part III) CMSC 611

7 (April 8, 1999 3:45 pm)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Reducing Cache Miss Rate
• Compiler optimizations

Blocking
Therefore, matrix multiplication is performed by multiplying the
submatrices first.

Matrix Y benefits from spatial locality and Z benefits from temporal
locality.

This method is also used to reduce the number of blocks that must be
transferred between disk and main memory.

Therefore, the technique is effective for several levels of the hierarchy.

Given the increasing speed gap in processor speed and memory access times,
these last two techniques will only increase in importance over time.

Advanced Computer Architecture Chapter 5 (Part III) CMSC 611

8 (April 8, 1999 3:45 pm)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Reducing Cache Miss Penalty
• Giving read misses priority

If a system has a write buffer, writes can be delayed to come after reads.

The system must, however, be careful to check the write buffer to see if
the value being read is about to be written.

A simple method of dealing with this problem:
Stall reads until the write buffer is empty.

However, this method increases the read miss penalty considerably since
the write buffer in write-through is likely to have blocks waiting to be
written.

An alternative is to check the write buffer for conflicts.
In cases like this, the write buffer acts as a victim cache.

SW 512(R0), R3
LW R1, 1024(R0)
LW R2, 512(R0)

Assume the write-through
cache maps 512 to the same
cache location as 1024.
Will R2 = R3 ?

Advanced Computer Architecture Chapter 5 (Part III) CMSC 611

9 (April 8, 1999 3:45 pm)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Reducing Cache Miss Penalty
• Using subblocks to reduce fetch time

Tags can hurt performance by occupying too much space or by slowing
down caches.

Using large blocks reduces the amount of storage for tags (and makes
them shorter), optimizing space on the chip.

This may even reduce miss rate by reducing compulsory misses.
However, the miss penalty for large blocks is high, since the entire
block must be moved between the cache and memory.

The solution is to divide each block into subblocks, each of which has a
valid bit.

1

1

0

0

1

1

1

0

1

0

0

0

1

0

1

0

100

300

200

204

Sub-blocks

Looks a lot like the
write buffer.

Advanced Computer Architecture Chapter 5 (Part III) CMSC 611

10 (April 8, 1999 3:45 pm)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Reducing Cache Miss Penalty
• Using subblocks to reduce fetch time

The tag is valid for the entire block, but only a sub-block needs to be read
on a miss.

Therefore, a block can no longer be defined as the minimum unit
transferred between cache and memory.

This results in a smaller miss penalty.

• Early restart & critical word first
This strategy does NOT require extra hardware (like the previous two
techniques).

It optimizes the order in which the words of a block are fetched and
when the desired word is delivered to the CPU.

• Early restart
With early restart, the CPU gets its data (and thus resumes execution) as
soon as it arrives in the cache without waiting for the rest of the block.

Advanced Computer Architecture Chapter 5 (Part III) CMSC 611

11 (April 8, 1999 3:45 pm)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

 Reducing Cache Miss Penalty
• Early restart & critical word first

• Critical word first
Instead of starting the fetch of a block with the first word, the cache can
fetch the requested word first and then fetch the rest afterwards.

In conjunction with early restart, this reduces the miss penalty by allow-
ing the CPU to continue execution while most of the block is still being
fetched.

• Nonblocking caches
A nonblocking cache, in conjunction with out-of-order execution, can
allow the CPU to continue executing instructions after a data cache
miss.

The cache continues to supply hits while processing read misses (hit
under miss).

The instruction needing the missed data waits for the data to arrive.

Advanced Computer Architecture Chapter 5 (Part III) CMSC 611

12 (April 8, 1999 3:45 pm)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Reducing Cache Miss Penalty
• Nonblocking caches

Complex caches can even have multiple outstanding misses (miss under
miss).

 But this greatly increases cache complexity.

• Second-level caches
This method focuses on the interface between the cache and main mem-
ory.

We can add an second-level cache between main memory and a small,
fast first-level cache.

This helps satisfy the desire to make the cache fast and large.

The second-level cache allows:
The smaller first-level cache to fit on the chip with the CPU and fast
enough to service requests in one or two CPU clock cycles.

Hits for many memory accesses that would go to main memory, less-
ening the effective miss penalty.

Advanced Computer Architecture Chapter 5 (Part III) CMSC 611

13 (April 8, 1999 3:45 pm)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Reducing Cache Miss Penalty
• Second-level caches
Performance of a multi-level cache:

The performance of a two-level cache is calculated in a similar way to the
performance for a single level cache.

So the miss penalty for level 1 is calculated using the hit time, miss rate,
and miss penalty for the level 2 cache.

For two level caches, there are two miss rates:
• Global miss rate

The number of misses in the cache divided by the total number of
memory accesses generated by the CPU (Miss rateL1*Miss rateL2).

• Local miss rate
The number of misses in the cache divided by the total number of
memory accesses to this cache (Miss rateL2 for the 2nd-level cache).

Avg mem access time Hit timeL1 Miss rateL1 Miss penaltyL1×+=

Miss penaltyL1 Hit timeL2 Miss rateL2 Miss penaltyL2×+=

Advanced Computer Architecture Chapter 5 (Part III) CMSC 611

14 (April 8, 1999 3:45 pm)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Reducing Cache Miss Penalty
Performance of a multi-level cache:

Note that the local miss rate for L2 is high because it’s only getting the
misses from the L1 cache (instead of all memory accesses).

In general, the global miss rate is a more useful measure since it indicates
what fraction of the memory accesses that leave the CPU go all the way
to memory.

Desirable characteristics for an L2 cache:
• Much larger than the L1 cache

Since L2 contains the same data as L1, making L2 about the same size
as L1 causes it to have a high local miss rate.

This is true since if we miss in L1, it is likely that we’ll miss in L2 as
well resulting in performance that is not much better than using
main memory alone.

Therefore, it must be much larger.

Advanced Computer Architecture Chapter 5 (Part III) CMSC 611

15 (April 8, 1999 3:45 pm)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Reducing Cache Miss Penalty
Desirable characteristics for an L2 cache:

• Higher associativity
The main reason for low associativity was fast, small caches.

The L2 cache need be neither, and will benefit from the higher hit
rate that more blocks per set provides.

• Larger block size
This has the advantage of reducing compulsory misses that must go
all the way to main memory.

Since the L2 cache is large, the effect of increasing conflict misses (as
is true for a smaller cache) is minimal.

Advanced Computer Architecture Chapter 5 (Part III) CMSC 611

16 (April 8, 1999 3:45 pm)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Reducing Cache Miss Penalty
Inclusion

If all of the data in the L1 cache is also in the L2 cache, the L2 cache has
the multilevel inclusion property.

Most caches enforce this property since it is easier to deal with cache
consistency.

Consistency between I/O and caches (and between caches in a multi-
processor) can be determined by checking second-level cache.

Design of L1 and L2 caches
Although they can be designed separately, it is often helpful to know if
there is going to be an L2 cache.

For example, write-through in L1 is much more effective if there is an L2
writeback cache to buffer repeated writes.

Similarly, a direct-mapped L1 cache can work fine if the L2 cache satis-
fies most of the conflict misses.

Advanced Computer Architecture Chapter 5 (Part III) CMSC 611

17 (April 8, 1999 3:45 pm)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Reducing Cache Miss Penalty
L2 cache summary

In general, cache design trades fast hits for few misses.

For an L1 cache, fast hits are more important.

For L2, there are many fewer hits, so fewer misses becomes more impor-
tant.

Therefore, larger caches with higher associativity and larger blocks are bene-
ficial in L2 caches.

Advanced Computer Architecture Chapter 5 (Part IV) CMSC 611

1 (April 15, 1999 10:45 am)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Reducing hit time
On many machines, cache access time limits the clock cycle rate !

Therefore, cache design affects more than average memory access time, it
affects everything.

• Small & simple caches
The less hardware that is necessary to implement a cache, the shorter the
critical path through the hardware.

Direct-mapped is faster than set associative for both reads and writes.
In particular, tag checking can overlap data transmission (there is
only one piece of data for each index).

Fitting the cache on the chip with the CPU is also very important for fast
access times.

Therefore, fast clock cycle time encourages small direct-mapped caches.

Advanced Computer Architecture Chapter 5 (Part IV) CMSC 611

2 (April 15, 1999 10:45 am)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Reducing hit time
• Avoid address translation during indexing

The CPU uses virtual addresses that must be mapped to a physical
address.

The cache may either use virtual or physical addresses.
A cache that indexes by virtual addresses is called a virtual cache, as
opposed to a physical cache.

A virtual cache reduces hit time since a translation from a virtual address
to a physical address is not necessary on hits.

Also, address translation can be done in parallel with cache access, so
penalties for misses are reduced as well.

So why doesn’t anyone use them ?

Advanced Computer Architecture Chapter 5 (Part IV) CMSC 611

3 (April 15, 1999 10:45 am)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Reducing hit time
• Avoid address translation during indexing

Virtual cache difficulties include:
• Process switches require cache purging
In virtual caches, different processes share the same virtual addresses
even though they map to different physical addresses.

When a process is swapped out, the cache must be purged of all entries
to make sure that the new process gets the correct data.

One solution: PID tags
Increase the width of the cache address tags to include a process ID
(instead of purging the cache.)

The current process PID is specified by a register.

If the PID does not match, it is not a hit even if the address matches.

Advanced Computer Architecture Chapter 5 (Part IV) CMSC 611

4 (April 15, 1999 10:45 am)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Reducing hit time
Virtual cache difficulties include:

• Aliasing
Two different virtual addresses may have the same physical address.

In such a case, it is possible to end up with two copies of the same block !

Anti-aliasing hardware
A hardware solution called anti-aliasing guarantees every cache block a
unique physical address.

Every virtual address maps to the same location in the cache.

Page coloring
This software technique forces aliases to share some address bits.

Therefore, the virtual address and physical address match over these
bits.

A direct-mapped cache that is 2k bytes (where k is the number of matching
bits) or smaller can never have duplicate physical addresses for blocks.

Advanced Computer Architecture Chapter 5 (Part IV) CMSC 611

5 (April 15, 1999 10:45 am)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Reducing hit time
Virtual cache difficulties include:

• Aliasing
Using the page offset
An alternative to get the best of both virtual and physical caches.

If we use the page offset to index the cache, then we can overlap the vir-
tual address translation process with the time required to read the tags.

Note that the page offset is unaffected by address translation.

However, this restriction forces the cache size to be smaller than the page
size.

Since the index comes only from the “physical” portion of the virtual
address (the page offset).

After doing both in parallel, the tag is checked against the physical
address stored in the cache.

High associativity allows for larger cache sizes.

Advanced Computer Architecture Chapter 5 (Part IV) CMSC 611

6 (April 15, 1999 10:45 am)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Reducing hit time
• Pipelined writes

Write hits take longer than read hits because tag checking is required
before the data is written.

One solution is to pipeline the writes (Alpha AXP 21064):

The second stage of the write (cache is updated with new data) occurs
during the first stage of the next write.

Allows tag checking and data writing to occur simultaneously.

Lower level memory

Delayed Write Buffer

CPU
address

Tag

=? Write
BufferM

u
x

DI
DO

=?

Data

Tag and data split

Advanced Computer Architecture Chapter 5 (Part IV) CMSC 611

7 (April 15, 1999 10:45 am)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Cache Optimization Summary

Technique Miss Rate Miss Pen. Hit time Hardware Complexity

Larger Block Size + - 0

Higher Associativity + - 1

Victim Caches + 2

Pseudo-associative + 2

Hardware Prefetching + 2

Compiler-controlled Pre + 3

Compiler Techniques + 0

Giving Read Misses Priority + 1

Subblock Placement + 1

Early Restart/Crit Wd First + 2

Nonblocking Caches + 3

Second-Level Caches + 2

Small and Simple Caches - + 0

Avoiding Address Trans. + 2

Pipelining Writes + 1

Advanced Computer Architecture Chapter 5 (Part IV) CMSC 611

8 (April 15, 1999 10:45 am)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Main Memory
Main memory is usually made from DRAM while caches use SRAM.

SRAM is faster (by almost an order of magnitude).
However, it’s also more expensive per bit and 1/4 to 1/8 as dense as
DRAM (1 transistor versus 6 transistors).

We now turn to optimizing DRAM performance.

Performance measures include:
• Latency

Important for caches.
• Bandwidth

Important for I/O.
Also for cache with second-level and larger block sizes.

Advanced Computer Architecture Chapter 5 (Part IV) CMSC 611

9 (April 15, 1999 10:45 am)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Improving Main Memory Performance
Latency measures:
• Access time

Time between when a read is requested and when the desired word
arrives.

• Cycle time
This is the minimum time between the starts of two accesses to memory.
This is at least as long as access time, and is usually longer.

• Refresh time
DRAMs must occasionally refresh their data.

This is done by reading all of the cells in a row and writing them
back.

This must be done every few milliseconds.

However, this operation consumes less than 5% of total time.
This is true because the time necessary to refresh is proportional to
the square root of the size of the DRAM.

Advanced Computer Architecture Chapter 5 (Part IV) CMSC 611

10 (April 15, 1999 10:45 am)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Improving Main Memory Performance
Amdahl suggested that memory capacity should grow linearly with CPU
speed.

Memory capacity grows four-fold every three years to supply this
demand.

The CPU-DRAM performance gap is a problem, however, since DRAM per-
formance improvement is only about 7% per year.

Cache innovations have addressed this problem to some degree.

We will now look at innovations in main memory organizations that are
more cost effective.

Advanced Computer Architecture Chapter 5 (Part IV) CMSC 611

11 (April 15, 1999 10:45 am)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Improving Main Memory Performance
• Wider main memory

CPU

1 word

Cache

1 word

Memory

(e.g. 32 bits)

CPU

1 word

MUX

Cache

Memory

1 word

Widening memory:
Doubles/Quadruples
memory bandwidth

Disadvantages:
MUX required on

allow word access.
critical path to

Increases minimum
memory increment

Complicates error
correction.

purchased by customer.

to cache.

Advanced Computer Architecture Chapter 5 (Part IV) CMSC 611

12 (April 15, 1999 10:45 am)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Improving Main Memory Performance
• Wider main memory

DRAM chips are typically 1-8 bits wide.
Any number of them can be accessed in parallel without extra delay.

By increasing the width of memory, the CPU can get more bits in a
single cycle.

This increases bandwidth between cache and memory.

For example, consider a cache with 4 word blocks.

Main memory might require:
• 4 cycles to send the address.
• 40 cycles to access memory.
• 4 cycles to transfer over the bus.
If the memory is only one word wide, a miss would require 4 x (4 + 40 +
4) = 192 cycles!

If the memory is enlarged to 4 words wide, miss time is only 48 cycles.

Advanced Computer Architecture Chapter 5 (Part IV) CMSC 611

13 (April 15, 1999 10:45 am)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Improving Main Memory Performance
• Interleaved memory

Banks are often one word wide, so bus width need not be changed.
However, several independent areas of memory can be accessed simulta-
neously.

CPU

1 word

Cache

1 word

Memory

(e.g. 32 bits)

CPU

1 word

Mem

Interleaving memory:
A method that allows us to
take advantage of the

Cache

Bank 0

1 word

Mem
Bank 1

Mem
Bank 2

Mem
Bank 3

parallelism made available.

Advanced Computer Architecture Chapter 5 (Part IV) CMSC 611

14 (April 15, 1999 10:45 am)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Improving Main Memory Performance
• Interleaved memory

For example, we could fetch a block by
• Sending 1 address.
• Waiting for a single memory cycle.
• Transferring 4 words for a total time of 4 + 40 + (4 x 4) = 60 cycles.

Which is a little slower than wider memory (due to bus limitations)
but it has several advantages.

Individual writes can also be overlapped if they are addressed to differ-
ent banks.

One possible interleaving strategy: Word interleaving:

0
4
8
12

Bank 0

Address

1
5
9
13

2
6
10
14

3
7
11
15

Parallel access

Optimizes sequential address access patterns.

Bank 1
Bank 2

Bank 3

Advanced Computer Architecture Chapter 5 (Part IV) CMSC 611

15 (April 15, 1999 10:45 am)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Improving Main Memory Performance
• Interleaved memory

Read access optimization is possible if, for example, cache block size is
four words since parallel access is possible (no conflicts).

Also, write-back caches make writes sequential as well as reads, improv-
ing efficiency even further.

How many banks are sufficient ?
One rule might be ‘# of banks >= # of clocks to access a word in a
bank’.

This allows up to 1 word per clock cycle in best case.

Advanced Computer Architecture Chapter 5 (Part IV) CMSC 611

16 (April 15, 1999 10:45 am)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Improving Main Memory Performance
• Independent memory banks

The interleaved memory concept can be extended to remove all restric-
tions on memory access.

We assumed for interleaved memory that only a single memory con-
troller was present.

This allowed the interleaving of sequential access patterns.
Address line sharing among the banks is possible in this scheme.

We can also use multiple independent controllers, e.g. one for I/O
devices, one for cache reads and one for cache writes.

Banks are still accessed in parallel, but now there may be multiple
independent requests serviced simultaneously.

This can be particularly useful with nonblocking caches (caches that
allow multiple outstanding reads misses).

And multiprocessors.

Advanced Computer Architecture Chapter 5 (Part IV) CMSC 611

17 (April 15, 1999 10:45 am)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Improving Main Memory Performance
• Avoiding memory bank conflicts

As with caches, programs can be modified to improve memory perfor-
mance.

The most important is to keep all the banks running.

Programs that access all banks evenly will perform best.
However, data memory references are not random and may end up
going to the same bank.

Using a prime number of memory banks makes this work well.
However, using a prime number makes the division operation
expensive:

Bank number Address MOD Number of banks=

Address within bank
Address

Number of banks
---=

Advanced Computer Architecture Chapter 5 (Part IV) CMSC 611

18 (April 15, 1999 10:45 am)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Improving Main Memory Performance
• Avoiding memory bank conflicts

There are schemes that use a prime number of banks and fast modulo
arithmetic to distribute memory accesses to many banks of memory.

For example, the following can be used:

This avoids the use of an expensive ‘non power of 2’ division operation
shown previously.

There is a proof that guarantees that the above mapping provides a
unique mapping between an address and a memory location.

For numbers of the form 2N-1, there is fast hardware to implement the
operation.

Bank number Address MOD Number of banks=

Address within bank Address MOD Number of words in bank=

Advanced Computer Architecture Chapter 5 (Part IV) CMSC 611

19 (April 15, 1999 10:45 am)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Improving Main Memory Performance
The previous methods work with any memory technology.

We now look at techniques that take advantage of the nature of DRAMs.

The first three take advantage of the individual row access and column access
operations that occur on a memory access.

DRAMs buffer a row of bits inside the DRAM for column access.

The size of the buffer is usually the square root of the DRAM size, e.g.
16Kbits for 64MBits.

In order to improve performance, DRAMs are designed to allow multi-
ple accesses to this buffer, eliminating the row access time.

Advanced Computer Architecture Chapter 5 (Part IV) CMSC 611

20 (April 15, 1999 10:45 am)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Improving Main Memory Performance
 DRAM-specific interleaving
• Nibble mode

The DRAM can supply three extra bits from locations sequential to the
one just accessed.

This can be done after each RAS (Row Access Strobe).

• Page mode
The DRAM can act as an SRAM once a row has been selected.
For example, random bits from the row can be selected by changing just
the column address.

This can occur until the next RAS or refresh.

• Static column mode (Extended Data Out [EDO] RAM)
Very similar to page mode, except that it is not necessary to toggle
(clock) the column access strobe line every time the column address
changes.

These optimizations can improve bandwidth by a factor of four.

Advanced Computer Architecture Chapter 5 (Part IV) CMSC 611

21 (April 15, 1999 10:45 am)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Improving Main Memory Performance
• Synchronous DRAM (SDRAM)

In this type of DRAM, the clock is supplied to the RAM chip, and all sig-
nals are synchronized to it.

This allows the RAM to run at higher speeds.

Similarly, sequential data can be retrieved faster, at the rate of one bit per
clock cycle.

• VRAM
Video RAM is used to drive displays.

It can be written or read using a normal interface or a special interface
that outputs rows one bit at a time (good for video displays!).

Advanced Computer Architecture Chapter 5 (Part V) CMSC 611

1 (April 15, 1999 1:52 pm)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Virtual memory
Virtual memory is just another level in the memory hierarchy.

It allows main memory to cache pages (blocks) normally stored on disk.

As with caches, the operations performed by virtual memory are transparent
to properly-running user programs.

Similarity to caching.
• Block = page

Blocks in caches are equivalent to pages in virtual memory.

Pages are anywhere from 1 KB to 64 KB (though today’s page sizes are
usually 4+ KB).

• Miss = page fault
A miss in a cache is analogous to a page fault.
The only difference is the penalty.

Millions of clock cycles for VM as compared to tens of clock cycles for
caches.

Advanced Computer Architecture Chapter 5 (Part V) CMSC 611

2 (April 15, 1999 1:52 pm)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Virtual memory
Similarity to caching.
• Miss rate

The miss rate for VM is very low -- less than 0.001%.
This means that fewer than one in one million accesses cause a VM
miss, and it’s often a lot fewer.

• Size
Caches are 16 KB - 1 MB or more.
The VM “cache” is 16 MB to 1024 MB or more -- a factor of 1000 larger.

Differences include:
• Replacement mechanism.

In caches, it is primarily controlled by the hardware.
In VM, replacement is primarily controlled by the OS.

• The number of bits in the address determines the size of VM where cache
size is independent of the address size.

Two classes of VM: paging systems and segmentation systems.

Advanced Computer Architecture Chapter 5 (Part V) CMSC 611

3 (April 15, 1999 1:52 pm)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Basic virtual memory caching questions
• Where can a block be placed ?

Since miss penalties are very high, OS designers always choose lower
miss rates over simple placement algorithms.

Therefore, VM is almost always fully-associative (blocks can be placed
anywhere in main memory).

• How is a block found ?
Paging systems use a page table to translate virtual page numbers into
physical page numbers.

The physical address is constructed by concatenating the physical
page number (found in the table) to the offset.

Segmented systems use a similar structure except that the segment’s
physical address is ADDED to the offset.

Note that the page table needs enough entries to map the entire virtual
address space since it is accessed using virtual page numbers.

Advanced Computer Architecture Chapter 5 (Part V) CMSC 611

4 (April 15, 1999 1:52 pm)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Basic virtual memory caching questions
• How is a block found ?

This can result in a large amount of space dedicated just to the page
table.

One optimization is to use hashing to restrict the number of page table
entries to the number of physical pages.

This is called an inverted page table.

Translation lookaside buffers (TLBs) are used to cache these transla-
tions, and reduce address translation time.

• Which block is replaced ?
Most operating systems use LRU or an approximation to it.

The page table often includes a reference bit to help do LRU replace-
ment.

Advanced Computer Architecture Chapter 5 (Part V) CMSC 611

5 (April 15, 1999 1:52 pm)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Basic virtual memory caching questions
• What happens on a write ?

VM is always writeback (capture as many writes as possible before writing
the page to disk).

Write-through does not make sense because of the very large access pen-
alty.

Thus, the page table uses a dirty bit to keep track which pages have been
modified and must be written to disk before they are replaced.

We do not want to write pages to disk that have not been modified.

Page tables imply that a memory reference requires two memory accesses.
One for the page table and one to get the data.

A TLB, which caches previous translations, can be effective in reducing mem-
ory references to the page table.

This works because of the principle of locality.

Advanced Computer Architecture Chapter 5 (Part V) CMSC 611

6 (April 15, 1999 1:52 pm)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Translation Look-aside Buffer
Similar to a cache:

Tag holds the virtual address
Data portion holds the physical page frame number, protection field,
valid bit, use bit and a dirty bit.

Page-frame Page-offset
<30> <13>

Alpha AXP 21064

V R W Tag Physical address

32:1 mux

<30> <21>

34-bit
physical
address<21>

<13>

Fully associative placement

Advanced Computer Architecture Chapter 5 (Part V) CMSC 611

7 (April 15, 1999 1:52 pm)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Translation Look-aside Buffer
As with normal caches, the TLB may be fully-associative, direct-mapped, or
set-associative.

Replacement may be done in hardware or may be assisted by software.
For example, a miss in the TLB causes an exception which is handled by
the OS, which places the appropriate page information into the TLB.

Hardware handling is faster, but software is more flexible.

Small, fast TLBs are crucial because they are on the critical path to accessing
data from the cache.

This is particularly true if the cache is physically addressed.

Advanced Computer Architecture Chapter 5 (Part V) CMSC 611

8 (April 15, 1999 1:52 pm)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Selecting a Page Sizes
Large page sizes are generally better because:

They reduce the size of the page table.
They are more efficient to transfer between memory and disk.
They allow a TLB to cache translations for more of memory.

The biggest drawback to large pages is that they may waste memory, internal
fragmentation.

Assuming a process has three primary segments (text, heap and stack),
the average wasted storage per process will be 1.5 times the page size.

When page size is 4 KB or 8 KB, this is negligible for machines with
megabytes of memory.

For larger pages, e.g., 64 KB, lots of storage may be wasted.

Advanced Computer Architecture Chapter 5 (Part V) CMSC 611

9 (April 15, 1999 1:52 pm)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Uses of Virtual Memory
• Protection

VM is often used to protect one program from others in the system.
Protection mechanisms must have hardware support.

• Base & bounds
Each reference must fall between two addresses, given by the base &
bound registers.

This method also allows some relocation.

User processes cannot be allowed to change these registers, but the OS
must be able to do so on a process switch.

Therefore, the hardware must be able to:
• Provide at least two modes of operations, user and kernel mode and a

mechanism to switch between them.
• Provide a protection mechanism for other portions of the CPU state to

prevent user processes from being malicious.
User/supervisor mode bit(s).
Interrupt enable/disable bit(s).

Advanced Computer Architecture Chapter 5 (Part V) CMSC 611

10 (April 15, 1999 1:52 pm)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Uses of Virtual Memory
• Protection

Base and bound registers constitute the minimum protection system.

Virtual Memory offers a more fine-grained alternative.
Processes have their own page tables, which they cannot modify
themselves.

Permission flags are provided with each segment or page.

Concentric rings of security and capability lists are more fined-grained
alternatives, allowing more than two levels of protection.

The OS course discusses these in detail.

Advanced Computer Architecture Chapter 5 (Part V) CMSC 611

11 (April 15, 1999 1:52 pm)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Effects of CPU design on memory hierarchy
• Superscalar & vector execution

A superscalar or vector machine may fetch several words per cycle.
Clearly, the memory system must deliver the bandwidth to handle
this, otherwise the benefit is lost.

The brunt of the load falls upon the L1 cache.
Bandwidth can be increased by widening the path to the cache or by
providing extra ports to the cache.

However, cache access is often the bottleneck in modern CPUs.

• Speculative execution
Speculative execution and conditional instructions may generate invalid
addresses that would not occur otherwise.

The memory system must recognize and suppress these exceptions.

Similarly, it must not stall the cache on a miss caused by a speculative
instruction.

Advanced Computer Architecture Chapter 5 (Part V) CMSC 611

12 (April 15, 1999 1:52 pm)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Effects of CPU design on memory hierarchy
• I/O and cache consistency

I/O devices move data from peripherals to memory.

This has two pitfalls:
Data written into memory is not automatically updated in the cache.
Data in a writeback cache is not written to memory immediately so
memory has stale data.

One solution is to flush blocks from the cache that are used in the I/O
operation.

This is done:
Before the I/O for a write (so the write operation uses up-to-date
information).

After the I/O for the read (before the I/O should work as well. The
CPU should not access the data as it is being read into memory).

An alternate method is simply to mark the blocks from I/O buffers as
uncacheable.

Advanced Computer Architecture Chapter 5 (Part V) CMSC 611

13 (April 15, 1999 1:52 pm)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Effects of CPU design on memory hierarchy
• I/O and cache consistency

Other solutions include:
• Watch the I/O buses for addresses in the tag.

This eliminates the consistency problem.
The drawback is that the checking slows down the cache.

• Do I/O directly into the cache.
This method guarantees consistency but it slows down the cache
since both the CPU and I/O access it.

Moreover, it displaces data in the cache with new data that is unlikely
to be accessed soon by the CPU.

Advanced Computer Architecture Chapter 5 (Part V) CMSC 611

14 (April 15, 1999 1:52 pm)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Fallacies and Pitfalls
• Don’t predict cache performance of program A from program B.

Programs vary widely in how they use cache.
A scientific program may have a small tight code loop but access
large quantities of data.

On the other hand, a word processing program might operate on rel-
atively little data but use lots of code.

• Simulate plenty of memory references.
A CPU executes 100 million or more instructions per second.

Simulating cache behavior using traces of only a few million traces can
be misleading.

Particularly since program locality behavior is not constant over the
run of the entire program.

• Don’t ignore the OS.
The OS can miss or interfere with application programs, causing misses.

